Identifying invertibility of bimodule cutegories Frank Verstraete ŧ Lourens Lootens arXv: 2211.01947 slides @ jebridgeman. bitbucket. 10

QGiven m×n matrix/& X	
is there Y such that:	
XY = 1L = YX	
X = X = X = X = 1	
\mathbf{A}	

QGiven m×n matrix/c X	· · · ·						
· · · · · · · · · · · · · · · · · · ·	• • •						
is there Y such that:	· · ·						
	· · ·						
· · · · · · · · · · · · · · · · · · ·	· · ·						
XY = 1L = YX							
$\int dx + dx $							
A) Yes $: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $							

QGiven m×n matrix/c	Q Given C D
· · · · · · · · · · · · · · · · · · ·	$\mathcal{H}_{\mathcal{H}} = \mathcal{H}_{\mathcal{H}} = \mathcal{H}_{\mathcalH} = $
is there Y such that:	is there N such that:
X Y = 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
A) Yes $: \[Ff \\ def \\ X \neq 0 \]$	

Overview - Rules of the game - Fusion cuts & their modules - What are they here? - Weak Hopf algebras & representations. Simple formula characterizing muertibility

Theorem 1 (Invertibility). Let C, D be unitary, fusion categories, and ${}_{\mathcal{C}}\mathcal{M}_{\mathcal{D}}$ an indecomposable, unitary, finitely semisimple, skeletal bimodule category. Then \mathcal{M} is invertible as a (C, \mathcal{D}) -bimodule category if and only if

$$\begin{split} & \operatorname{FPdim} \mathcal{C} = \operatorname{FPdim} \mathcal{D} \qquad \text{and} \\ & \frac{1}{\operatorname{rk} \mathcal{M}} \sum_{\substack{\boldsymbol{a} \in \operatorname{Irr} \mathcal{C} \\ \boldsymbol{b}, \boldsymbol{d} \in \operatorname{Irr} \mathcal{M} \\ \alpha, \beta, \mu, \nu}} \frac{d_{\boldsymbol{a}}}{d_{\boldsymbol{b}}^{2}} \sum_{\boldsymbol{\alpha}}^{\mu} [& \boldsymbol{F}_{\boldsymbol{a}\boldsymbol{b}\boldsymbol{c}}^{d}]_{\boldsymbol{\mu}}^{\beta} \sum_{\boldsymbol{\alpha}}^{\nu} [& \boldsymbol{F}_{\boldsymbol{a}\boldsymbol{b}\boldsymbol{c}'}^{d}]_{\boldsymbol{\nu}}^{\beta} = \delta_{\boldsymbol{c}}^{\boldsymbol{c}'}, \end{split}$$

for all $c, c' \in \operatorname{Irr} \mathcal{D}$.

-Associate algebra A to erm - Compute Rep(A) (this is Marita dual e_n^*) - Is $\operatorname{Rep}(A) \cong \mathcal{D}$? Can ve check without computing Rep(A)? -Schur character orthogonality for A-

Game	
Given a <u>bimodule category</u> , specified by its <u>skeletal</u> data,	
cleternine whether it's invertible	
· · · · · · · · · · · · · · · · · · ·	
$e^{\mathcal{N}}\mathcal{M}^{\mathcal{C}}\mathcal{D}$	
n na Tanàna amin'ny faritr'ora dia mampika dia mandritry amin'ny faritr'ora dia mandritry amin'ny faritr'ora di	
$\mathcal{M} \otimes_{\mathcal{D}} \mathcal{M}^{\mathcal{O}} \cong \mathcal{C}$	
· · · · · · · · · · · · · · · · · · ·	

Fusion-, Module-, Bimodule-categories ounit 1) Finite set of simpler irre = E1, a, b, ... S $\sim \Sigma^{\circ}F$ at the constant of the constan unitory matrix encoding associators (adh) @ c 2 ~ (b@c)

Example : Vee G \tilde{c} irr Vec 6 = [G Ð gh hk gøh = gh 3 h ghl Fg,h,k]hk

Example : Rep G irr RepG = irreclucible reps of G $\sum_{x} \left[F_{xyz} \right]_{y}^{v}$ $2 P_{x} \otimes P_{y} = \Theta N_{xy}^{2} P_{z}$ P V. 6j - symbols

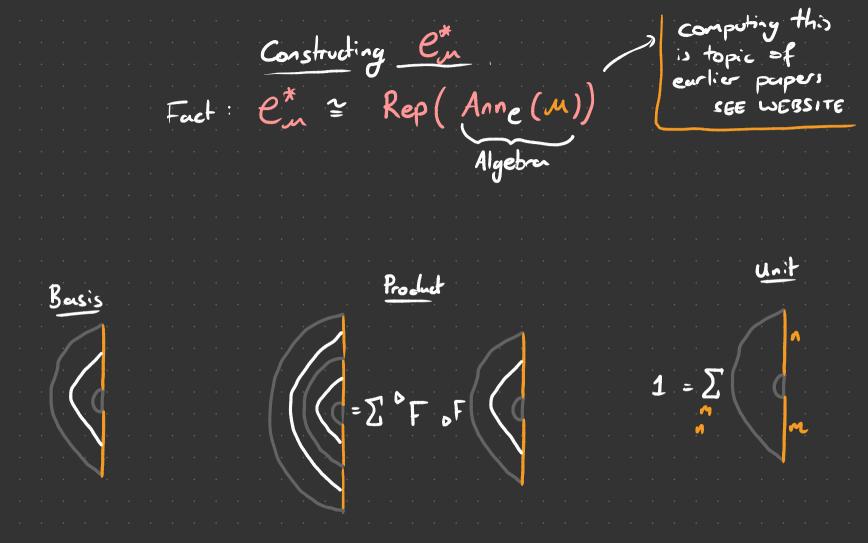
x < = drdn n Fusion-, Module-, Bimodule - categories dn Given C fusion 1) Finite set of simpler irr M = Em, n, ... S Com ÷ΣF 2) $(\alpha < -) \propto c \mathcal{M}(\alpha p m, n)$ unitary matrix encoding associators (~@h) D M ~ ~@(bDA)

Fusion-, Module-, Bimodule-categories Given C, D fusion, COMUD $P = \sum_{p \in F_{end}} \left[F_{end} \right]_{q}$ Skeletal data: irre, irrM, irrD {[®]F, ^PF, ^MF, ^dF, [®]F}) ↓ This is what we're given

Example Vee & Vec & Rep & = 1-dim vector space. 1 simple Left Px(Σ V. 🖌 + a x = dim Q Leck Can pentagon egns Ce gh 2 -

Vee G & Vec P D Property of the mixed associator: $\frac{1}{|G|} \sum_{g} X_{x}(g) X_{y}(g') = S_{x}^{*} \quad \text{for } x, y \text{ irred}$ Schur's 1st orthogonality relation. If we had chosen a different D, this wouldn't * Reducible reps 7 Can check
* Multiple Copies 7 D ≅ Rep 6
* Missing irreps 7 work. How to generalize?

Morita Ducl ENM, can construct a unique Given FC et, the dual, such that e rur en is invertible. Cn = Ende (M) part of the cluba of module M a F = F(n) functor $(a \circ m) \circ F = F(a \circ m) \simeq a \circ F(m) = a \circ (m \circ F)$



Roughly: to specify a module functor, we need vector spaces $\mathcal{M}(F(m), n)$ For this we use the us. underlying rep. Natural is omorphisms: F(aom) ~ a o F(m) provided by action of the algebra. ° F

Vec G & Vec 9 [h . := $\operatorname{Rep}(A_{nn}) \cong \operatorname{Rep}(\mathbb{C}G)$

Recall: We want to show ERMND is invertible. Reduces to showing that $\mathcal{D} \cong \operatorname{Rep}(\operatorname{Ame}(\mathcal{M}))$

Representations of Anne (M) from R Pick simple zed Define vector space Ve with busis $\begin{cases} \alpha \\ M, n \in inr M; \alpha \leq \dim M(m \circ z, n) \end{cases}$ Action of Anne (M) =Σ ⁶⁴F

Example: Veca2 Vec C Rep Sz $\frac{1}{\pi} = \int_{\pi}^{\infty} (1)_{00} + \int_{\pi}^{\infty} (1)_{01} = \int_{\pi}^{\infty} (1)_{01} + \int_{\pi}^{\infty} (1)_{01} = \int_{\pi}^{\infty} (1)_{01} + \int_{\pi}^{\infty} (1)_{01}$ $\int_{\Pi} (\mathbf{a}) = \begin{pmatrix} \mathbf{1} & \mathbf{o} \\ \mathbf{o} & \mathbf{1} \end{pmatrix} \qquad \qquad \int_{\Pi} (\mathbf{1}) = \begin{pmatrix} \mathbf{o} & \mathbf{1} \\ \mathbf{1} & \mathbf{o} \end{pmatrix}$ on The subgroup restricts to 105 $(\chi_{\pi},\chi_{\pi}) > 1$

- Want to show $D \cong C_{n}^{*} \cong \operatorname{Rep}(A_{n}e(n))$ -* Check simple Sbjects label distinct irreducible representations. Character or Mogonality? $\chi_{\mathbf{x}}\left(\boldsymbol{\zeta}\right) = \operatorname{Tr} \mathcal{G}_{\mathbf{x}}\left(\boldsymbol{\zeta}\right) = \Sigma\left(\overset{\otimes}{\mathsf{F}}\right)$ * Check we haven't missed any. Dimension condition

Can we use extra structure to construct an inner product so that (Xi, Xi) = Si for irreducible characters

* Fact: Anne (M) is a C^{*}-weak Hopf algebra WHA: Algebra + Coalgebra + Antipode weakened compatibility $\Delta 1 \neq 101$ Count coproduet. $\Delta \left(\begin{array}{c} \alpha \\ \end{array} \right) = \sum_{n=1}^{\infty} \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right) = \left(\begin{array}{c} \alpha \\ \end{array}$

· · · · · · · · · · ·	Haar Integrals in WHA
Vector	Λ in A such that
	$\mathcal{P}(\Lambda) = \mathcal{E}(1_{(1)} \times) 1_{(2)} \Lambda \qquad \forall \mathbf{x} \in \mathcal{A}$ $\Lambda \mathcal{P}(\mathbf{x}) = \Lambda 1_{(1)} \mathcal{E}(\mathbf{x} 1_{(2)})$
	+ normalization condition. Hopf: $x \Lambda = \Lambda x = \varepsilon(x) \Lambda$
Generalizes	$\frac{1}{161} \sum_{g \in G} g in He case A = \mathbf{C}G$
Also	ays exists in case A is C [*]

 $(\chi_x,\chi_y) := \langle \chi_x \chi_y^*, \Lambda \rangle = S_i^j$ Cluim: Irreducible characters of WHA := Hom (A, C) also a WHA G Boehm D Nikshych Ostrik $\chi_{x}\chi_{y}^{*} = \sum N_{xy}^{2}\chi_{z}$ So $(\chi_x, \chi_y) = \Sigma N_{x\bar{y}}^2 \chi_z(\Lambda)$ Trivial rep? is image of Pf [Boehn 99] $\chi_2(\Lambda) = S_2^{\text{trivial}}$ $\epsilon(1_{(1)}-)1_{(1)}$ Look for Homs.

Final result: $(X_{x}, X_{y}) = \int_{x}^{y} iff x = y are irreps.$ Another way to evaluate: $(\chi_{x}, \chi_{y}) = \langle \chi_{x} \chi_{y}^{*}, \Lambda \rangle = \chi_{x} (\Lambda_{co}) \chi_{y} (S(\Lambda_{co})^{*})$ Plug in $\chi_{\mathbf{x}}\left(\zeta\right) = \Sigma\left({}^{\bowtie}F\right)$

 $\frac{1}{\operatorname{rk}\mathcal{M}}\sum_{\substack{\boldsymbol{a}\in\operatorname{Irr}\mathcal{C}\\b,d\in\operatorname{Irr}\mathcal{M}}}\frac{d_{\boldsymbol{a}}}{d_{b}^{2}} {}_{\alpha}^{\mu} \left[{}^{\bowtie}F_{\boldsymbol{a}bc}^{} \right]_{\mu}^{\beta} {}_{\alpha}^{\nu} \left[{}^{\bowtie}F_{\boldsymbol{a}bc'}^{} \right]_{\nu}^{\beta} = \delta_{c}^{c'}$ If D = en, then α, β, μ, ν $\forall c, c' \in \mathcal{P}$ otherwise: 1) D Missing some irreps) Dimensions won't match 2) $x \in \mathbb{D}$ reducible $\Rightarrow (\chi_{x}, \chi_{z}) > 1$ 3) x, y label same rep =) $(\chi_{x}, \chi_{y}) \neq 0$.

Orthogonality of characters for C*- WHA gives

Theorem 1 (Invertibility). Let C, D be unitary, fusion categories, and $_{\mathcal{C}}\mathcal{M}_{\mathcal{D}}$ an indecomposable, unitary, finitely semisimple, skeletal bimodule category. Then \mathcal{M} is invertible as a (C, \mathcal{D}) -bimodule category if and only if

 $\operatorname{FPdim} \mathcal{C} = \operatorname{FPdim} \mathcal{D}$ (19a)and $\frac{1}{\operatorname{rk}\mathcal{M}}\sum_{\substack{\boldsymbol{a}\in\operatorname{Irr}\mathcal{C}\\b,d\in\operatorname{Irr}\mathcal{M}}}\frac{d_{\boldsymbol{a}}}{d_{\boldsymbol{b}}^{2}} \mathop{\approx}\limits^{\boldsymbol{\mu}}_{\alpha} [{}^{\bowtie}F_{\boldsymbol{a}\boldsymbol{b}\boldsymbol{c}}^{d}]_{\boldsymbol{\mu}}^{\boldsymbol{\beta}} \mathop{\approx}\limits^{\boldsymbol{\nu}}_{\alpha} [{}^{\bowtie}F_{\boldsymbol{a}\boldsymbol{b}\boldsymbol{c}'}^{d}]_{\boldsymbol{\nu}}^{\boldsymbol{\beta}} = \delta_{\boldsymbol{c}}^{\boldsymbol{c}'},$ (19b) $\alpha.\beta.\mu.\nu$ for all $c, c' \in \operatorname{Irr} \mathcal{D}$. also extend to matrix element orthog: Can $\sum_{q} \int_{\mathbf{x}} (g)_{\alpha \beta} \int_{\mathbf{y}} (g^{-1})_{\beta' \alpha'} = \frac{1}{\dim V_{\mathbf{x}}} \int_{\mathbf{x}}^{\mathbf{x}} \int_{\mathbf{x}}^{\mathbf{x}'} \int_{\beta}^{\beta'}$ Schur's 2° orthogonality relation.

Theorem 2 (Orthogonality of matrix elements). Let C be a unitary fusion category, and ${}_{\mathcal{C}}\mathcal{M}_{\mathcal{C}^*_{\mathcal{M}}}$ an indecomposable, unitary, finitely semisimple, invertible bimodule category. Let c, c' be simple objects in $\mathcal{C}^*_{\mathcal{M}}$, then

$$\sum_{\substack{a\\\alpha,\nu}} d_{a} \mathop{}_{\alpha}^{\beta} \left[\bowtie F_{abc}^{\ d} \right]_{\mu}^{\nu} \mathop{}_{\alpha}^{\beta'} \left[\bowtie F_{abc'}^{\ d} \right]_{\mu'}^{\nu} = \delta_{c}^{c'} \delta_{\beta}^{\beta'} \delta_{\mu}^{\mu'} \frac{d_{e}d_{f}}{d_{c}}$$
(20)

Application : MPO - ingreeting $MPO(e, \mathcal{M}, \mathcal{P}) =$ PEPS (M, D) = STATE (T, M) Quartum symmetries of The Physical State 4 (Not unique) $= - + = \Rightarrow \# \forall \leq r k Z(e)$ $(M = T^{2})$

Theorem 2 (Orthogonality of matrix elements). Let C be a unitary fusion category, and ${}_{\mathcal{C}}\mathcal{M}_{\mathcal{C}^*_{\mathcal{M}}}$ an indecomposable, unitary, finitely semisimple, invertible bimodule category.

Let c, c' be simple objects in $\mathcal{C}^*_{\mathcal{M}}$, then

$$\sum_{\substack{\mathbf{a} \\ \alpha,\nu}} d_{\mathbf{a}} \mathop{\stackrel{\beta}{_{e}}}_{\alpha} \left[\bowtie F_{\mathbf{a}bc}^{\ d} \right]_{\mu}^{\nu} \mathop{\stackrel{\beta'}{_{e}}}_{\alpha} \left[\bowtie F_{\mathbf{a}bc'}^{\ d} \right]_{\mu'}^{\nu} = \delta_{c}^{c'} \delta_{\beta}^{\beta'} \delta_{\mu}^{\mu'} \frac{d_{e}d_{f}}{d_{c}}$$

(20)

SAME EQN

Outlook - Extending classical results to quantum symmetries - Schur orthogonality relations -Wigner - Eckart that constraints on symmetric tensors - Beyond finite case? weak Hopf + ? - Fusion n-cuteyories?

																	1												
									·('			u	es-	Hie	5	7 .	(-												
																	•												
												3 9		- 4			م		_										
									° A	٢X	Ç∧ (ò	2	21	1.	\boldsymbol{O}	19	4	ł										
					ĺ		1	3		1	ر ا	bri	d	180	100	•	hi	44	v	10	6	1.	<u>ר</u>						
				SI	cie	5	C			J			(<u> </u>		7 8.			-		~ •		-						
													•	•															