Identifying invertibity of bimodule categories
ω Laurens Lootens \ddagger Frank Verstrade

$$
a r X_{v}: 2211.01947
$$

slides (c) jebridgeman. bitbuckel. io

Q| Given $m \times n$ matrix $/ \subset$ X
is there Y such that:

$$
x y=\mathbb{1}=y x
$$

A)

Q| Given $m \times n$ matrix $/ \subset$

$$
X
$$

is there Y such that:

$$
x y=\mathbb{1}=y x
$$

A) Yes inf $\left\{\begin{array}{l}m=n \\ \operatorname{det} x \neq 0\end{array}\right.$

$$
Q \mid \text { Given } m \times n \text { matrix } / \subset
$$

is there Y such that:

$$
x y=\mathbb{1}=y x
$$

A) Yes inf $\left\{\begin{array}{l}m=n \\ \operatorname{det} x \neq 0\end{array}\right.$
$\left.Q_{\text {Given }} e\right|_{\mu} \theta$ is there N such that:

Overvies

- Rules of the game
- Fusion cats \& their modules
- What we they there?
- Weak Hopi algebras $\$$ representations.
\longleftrightarrow Simple formula charudeizing inedibility

Theorem 1 (Invertibility). Let \mathcal{C}, \mathcal{D} be unitary, fusion categories, and $\mathcal{C}_{\mathcal{M}}$ an indecomposable, unitary, finitely semisimple, skeletal bimodule category. Then \mathcal{M} is invertible as a ($\mathcal{C}, \mathcal{D})$-bimodule category if and only if

$$
\begin{aligned}
& \mathrm{FP} \operatorname{dim} \mathcal{C}=\mathrm{FP} \operatorname{dim} \mathcal{D} \quad \text { and } \\
& \frac{1}{\operatorname{rk} \mathcal{M}} \sum_{\substack{a \in \operatorname{Irr} \mathcal{C} \\
b, d \operatorname{Irr} \mathcal{M} \\
\alpha, \beta, \mu, \nu}} \frac{d_{a}}{d_{b}^{2}}{ }_{\alpha}^{\mu}\left[\bowtie_{\alpha}\left[F_{a b c}\right]_{\mu}^{\beta}\right]_{\mu}^{\beta}{ }_{\alpha}^{\nu}\left[\bowtie F_{a b c^{\prime}}^{d}\right]_{\nu}^{\alpha}=\delta_{c}^{c^{\prime}}
\end{aligned}
$$

for all $c, c^{\prime} \in \operatorname{Irr} \mathcal{D}$.

- Associate algebra A to $e^{\wedge} \mu$
- Compute $\operatorname{Rep}(A) \quad$ (this is Morita duel e_{μ}^{*})
- Is $\operatorname{Rep}(A) \cong D$?

Can we check without computing Rep (A) ?
-Schur character orthogonality for A -

Game
Given a bimodute category, specified by its skeletal data, determine whether it's invertible

$$
e^{\wedge} \mu^{\wedge} \theta
$$

$$
\mu \omega_{\partial} \mu^{\omega P} \cong e
$$

Fusion-, Module-, Bimodule-categories
©unit

1) Finte set of simpler irr $l=\{1, a, b, \ldots\}$
2)

$$
\alpha_{a} \Lambda_{b}^{c} \longleftrightarrow \alpha \in e(a \in b, c)
$$

unitary matrix eacoding associators

$$
\left(\left.z^{a}=d_{a} \times \lambda^{2}=\sqrt{\frac{d x d y}{d y}} \right\rvert\, z\right.
$$

$$
(a O b) \otimes_{c} \simeq a(b e c)
$$

Example: Yet

1) $\operatorname{irr} \operatorname{Vee} G=G$ as a set
2) $g \odot h=g h$

$$
\left[{ }_{g h}^{0} F_{g h, k}\right]_{h k}=+1
$$

Example: Repf

1) $\operatorname{irr} \operatorname{Rep} t=$ irreducble rops of G
2) $\rho_{x} \otimes \rho_{y}=\oplus N_{x}^{z} \rho_{z}$

$\times\left.\right|_{n} ^{n}=\left.\sqrt{\frac{d_{x d m}}{d_{n}}}\right|^{n}$
Fusion-, Module-, Bimodule - categories
Given e fusion
3) Finite set of simpler or $\mu=\{m, n, \ldots\}$ eD μ
4)

$$
\int_{a}^{n} \alpha \longleftrightarrow \alpha \in \mu\left(a a_{m}, n\right)
$$

unitary matrix encoding associators

$$
(a \Delta h) \Delta M \simeq a(b \Delta n)
$$

Fusion-, Module-, Bimodule-categories
Given e, D fusion, $e v \mu \backsim 0$

$$
\left(\left.\left.\right|_{p} ^{p}\right|_{m} ^{n}=\sum{ }_{d}\left[^{[a} F_{c m}{ }_{c}^{n} d\right]_{q}\right.
$$

$\left.\frac{\text { Skeletal data: } \operatorname{irre}, \operatorname{irr} \mu \text {, irs }}{\left\{{ }^{\circ} \mathrm{F},{ }^{\nabla} F,{ }^{\infty} F,{ }^{\wedge} F,{ }^{\oplus} F\right\}}\right\}$
This is what were given

Example. Ne $G \wedge V_{e c} \curvearrowleft \operatorname{Rep} G$

$$
1 \text { simple } *=1 \text {-dim valor space. }
$$

$\operatorname{Vec} G \leadsto \operatorname{Vec} \curvearrowleft D$
Property of the mixed associator:

$$
\frac{1}{|G|} \sum_{g} x_{x}(g) x_{y}\left(g^{\prime \prime}\right)=\delta_{x}^{4} \quad \text { for } x, y \text { irred. }
$$

Schur's $1^{\text {st }}$ orthogonality relation.
If we had chosen a differat D, this would hit work.
$\left.\begin{array}{l}\text { * Reducible reps } \\ \text { * Multiple copies } \\ \text { * Missing reps }\end{array}\right\}$
Can clack
$D \cong \operatorname{Rep} G$
How to generalize?

Morita Dual
Given $\quad e \sim \mu$, can construct a maize
FC e_{μ}^{*}, the dual, such that

$$
e \approx \mu 0 e_{\mu}^{x}
$$

is invertible.

$$
\begin{gathered}
e_{m}^{*} \cong E_{n d e}(\mu) \quad \text { part + the decatur } \\
m \circ F=F(m) \quad \begin{array}{r}
\text { ovule } \\
\text { founder }
\end{array} \\
(a \circ m) \odot F=F(a \circ m) \cong a \Delta F(n)=a \triangleright(m \Delta F)
\end{gathered}
$$

Constructing e_{μ}^{*}.
Fact: $e_{\mu}^{*} \cong \operatorname{Rep}(\underbrace{A_{n n e}(\mu)}_{\text {Algebra n }}) \quad \underbrace{\begin{array}{c}\text { eurlic papers } \\ \text { see wegsite }\end{array}}$

Proclus
Unit

$$
1=\sum_{n} \int_{m}^{n}
$$

Roughly: to specify a module functor, we reed vector spaces $\mu(F(m), n)$
For this we use the vas. vaddying rep

Natural is omorphisus: $F(a \triangleright m) \simeq a \triangleright F(m)$
provided by action of the algebra.

$\operatorname{Vec} G \approx \operatorname{Vec}$

$$
\operatorname{Rep}\left(A_{n n}\right) \cong \operatorname{Rep}(\mathbb{C} G)
$$

Recall: We want to show $e^{\wedge} \mu \cap D$ is invertible.

Reduces to showing that

$$
D \cong \operatorname{Rep}\left(A m_{e}(\mu)\right)
$$

Represctations of $A_{m e}(\mu)$ from D
Pick simple $x \in \mathcal{D}$
Define vector space V_{x} with basis

$$
\left\{\left.\alpha\right|_{a} ^{n} \mid M, n \in \operatorname{irr} \mu ; \alpha \leq \operatorname{dim} \mu(\mu \triangleleft x, n)\right\}
$$

Action of $A m_{e}(\mu)$:

$$
\left\langle\cdot h_{x}:=\left\langle\left.\right|_{x}=L^{\infty} F h_{x}\right.\right.
$$

Example: $V_{e c} \lambda_{2} \geqslant V_{e c} \cap R_{e p} S_{3}$

$$
\begin{aligned}
& { }^{1}\left\langle\left.\right|_{\pi}=\left.\rho_{\pi}(1)_{00}\right|_{\pi}+\left.\rho_{\pi}(1)_{01}\right|_{\tau}\right. \\
& \rho_{\pi}(0)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \rho_{\pi}(1)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

π restrects to $1 \oplus \sigma$ on \mathbb{Z}_{2} subyroup

$$
\left(x_{\pi}, x_{\pi}\right)>1
$$

- Wart to show $D \cong e_{\mu}^{*} \cong \operatorname{Rep}(\operatorname{Ann} e(\mu))-$
* Check simple objects label distinct irreducibt representations Character orthogonality?

$$
x_{x}\left(\lambda_{1}\right)=T \rho_{x}\left(\zeta_{1}\right)=\Sigma\left({ }^{\infty} F\right)
$$

* Check we haven't missed any. Dimension condition

Can we use extra structure to construct an inner product so that $\left(X_{i}, X_{j}\right)=\delta_{i}^{j}$ for irreducible?

* Fact: Anne (μ) is a C^{x}-weck Hopf algebren (pure)
- WHA: Algebra + Coalgebra $+\underbrace{\text { Antipode }}$ weakened computibility $\underbrace{\Delta 1 \neq 101}$
coproduct.

Hoar Integrals in WHA
Vector Λ in \boldsymbol{A} such that

$$
\begin{array}{ll}
x \Lambda=\varepsilon\left(1_{(1)} x\right) 1_{(2)} \Lambda \\
\Lambda x=11_{(1)} \varepsilon\left(x 1_{(2)}\right)
\end{array} \quad \forall x \in A
$$

+ normalization condition.
Hoof: $x \Lambda=1 x=\varepsilon(x) \wedge$
Genculizes $\quad \frac{1}{|G|} \sum_{g_{C G}} g$ in the case $A=C G$
Always exists in cause A is C^{*}

Claim: $\left(x_{x}, x_{y}\right):=\left\langle x_{z} x_{y}^{*}, \wedge\right\rangle=\delta_{i}^{j}$
Irreducible characters of WHA

$$
\begin{aligned}
& \hat{A}:=\operatorname{Hom}(A, \mathbb{C}) \text { also a wHA } \begin{array}{l}
G \text { Boehm } \\
\text { D Noshing } \\
\text { V Ostrid }
\end{array} \\
& X_{x} X_{y}^{*}=\sum N_{x y}^{z} X_{z}
\end{aligned}
$$

$$
\text { so } \quad\left(x_{x}, x_{y}\right)=\sum N_{x j}^{z} X_{z}(1)
$$

is image of
[Boctm99] $X_{z}(1)=\delta_{z}^{\text {trivia }}$
Pf:
Trivial rep= $\varepsilon\left(1_{(i)}-\right) 1_{(z)}$ Look for Homs.

Final result:
$\left(X_{x}, X_{y}\right)=\delta_{x}^{y} \quad$ if $x=y$ are iras.
Another way to evaluate:

$$
\left(x_{x}, x_{y}\right)=\left\langle x_{x} X_{y}^{*}, \Lambda\right\rangle=x_{x}\left(\Lambda_{(1)}\right) \overline{x_{y}\left(s\left(\Lambda_{(i)}\right)^{*}\right)}
$$

$$
P \text { lug in } X_{x}\left(\sum_{1}\right)=\Sigma\left({ }^{\infty} F\right)
$$

otherwise : 1) \& Missing some irreps
\Rightarrow Dimasions won't match
2) $x \in D$ redueible $\Rightarrow\left(x_{x}, x_{x}\right)>1$
3) x, y tabel same rep $\Rightarrow\left(x_{x}, x_{y}\right) \neq 0$.

Orthogonality of chwecters for $C^{x}-\omega H A$ gives:

Theorem 1 (Invertibility). Let \mathcal{C}, \mathcal{D} be unitary, fusion categories, and $\mathcal{C}_{\mathcal{D}}$ an indecomposable, unitary, finitely semisimple, skeletal bimodule category. Then \mathcal{M} is invertible as a $(\mathcal{C}, \mathcal{D})$-bimodule category if and only if

$$
\begin{align*}
& F P \operatorname{dim} \mathcal{C}=F P \operatorname{dim} \mathcal{D} \quad \text { and } \tag{19a}\\
& \left.\frac{1}{\operatorname{rk} \mathcal{M}} \sum_{\substack{a \in \operatorname{Irr} \mathcal{C} \\
b, d \in \operatorname{Ir} \mathcal{M} \\
\alpha, \beta, \mu, \nu}} \frac{d_{a}}{d_{b}^{2}}{ }_{b}^{\mu}{ }_{\alpha}^{b}\left[F_{a b c}^{d}\right]_{\mu}^{d}\right]_{\alpha}^{\beta}{ }_{\alpha}^{\nu}\left[\bowtie F_{a b c^{\prime}}^{d}\right]_{\nu}^{\beta}=\delta_{c}^{c^{\prime}}, \tag{19b}
\end{align*}
$$

for all $c, c^{\prime} \in \operatorname{Irr} \mathcal{D}$.
Can also extend to matrix element orkog:

$$
\begin{array}{r}
\sum_{g} \int_{x}(g)_{\alpha \beta} \int_{y}\left(g^{-1}\right)_{\beta^{\prime} \alpha^{\prime}}=\frac{|\sigma|}{\operatorname{din} V_{x}} \delta_{x}^{y} \delta_{\alpha}^{\alpha^{\prime}} \delta_{\mu}^{\mu^{\prime}} \\
\text { Schur's } 2^{n d} \text { orthogonality relation. }
\end{array}
$$

Theorem 2 (Orthogonality of matrix elements). Let \mathcal{C} be a unitary fusion category, and $\mathcal{C}_{\mathcal{C}} \mathcal{C}_{\mathcal{M}}^{*}$ an indecomposable, unitary, finitely semisimple, invertible bimodule category.

Let c, c^{\prime} be simple objects in $\mathcal{C}_{\mathcal{M}}^{*}$, then

$$
\sum_{a} d_{a} \underset{\alpha}{\beta}\left[\bowtie^{\beta}\left[F_{a b c}^{d}\right]_{\mu}^{\nu}\right]_{\underset{f}{\beta^{\prime}}}^{\underset{\alpha}{\beta}}\left[\bowtie F_{a b c^{\prime}}^{d}\right]_{\mu^{\prime}}^{\nu}=\delta_{c}^{c^{\prime}} \delta_{\beta}^{\beta^{\prime}} \delta_{\mu}^{\mu^{\prime}} \frac{d_{e} d_{f}}{d_{c}}
$$

Application: MPD-iijecturty

$$
\begin{gathered}
\operatorname{PEPS}(\mu, D)=\operatorname{MPO}(e, \mu, D)=-1 \\
\mid \operatorname{STATE}(M, M)
\end{gathered}
$$

Physical state ψ_{m} (Not unique) \quad Quantum symmetries of ψ_{m}

$$
\frac{k}{k}=-(-1) \Rightarrow \psi \leqslant \begin{gathered}
-\infty(e) \\
\left(M=T^{2}\right)
\end{gathered}
$$

Theorem 2 (Orthogonality of matrix elements). Let \mathcal{C} be a unitary fusion category, and $\mathcal{C}_{\mathcal{C}}^{\mathcal{C}_{\mathcal{M}}^{*}}$ an indecomposable, unitary, finitely semisimple, invertible bimodule category.

Let c, c^{\prime} be simple objects in $\mathcal{C}_{\mathcal{M}}^{*}$, then

$$
\begin{equation*}
\left.\sum_{\alpha, \nu}^{a} d_{a}{ }_{\alpha}^{\beta}{ }_{\alpha}^{\beta}\left[\bowtie F_{a b c}^{d}\right]_{\mu}^{d}\right]_{\alpha}^{\nu}{\underset{\alpha}{e}}_{\beta^{\prime}}\left[\bowtie F_{a b c^{\prime}}^{d}\right]_{\mu^{\prime}}^{\nu}=\delta_{c}^{c^{\prime}} \delta_{\beta}^{\beta^{\prime}} \delta_{\mu}^{\mu^{\prime}} \frac{d_{e} d_{f}}{d_{c}} \tag{20}
\end{equation*}
$$

SAME EQN

$=$

Outlook

- Extending classical results to quentin symmetries
- Sclur orthogonality relations
- Wigner - Eckert tho : constraints on symmetric tensors
\because
- Beyond finite case?
- Fusion n-categories? weak Hopf + ?

Plugging skeletal data into

Yields eq- 20$]$
So

$$
\begin{array}{cc}
\text { MPO-injectivity }=\begin{array}{c}
\text { invertible } \\
\text { bimodule }
\end{array}
\end{array}
$$

Theorem 2 (Orthogonality of matrix elements). Let \mathcal{C} be a unitary fusion category, and $\mathcal{C}^{\mathcal{M}_{\mathcal{\mathcal { M }}}^{*}}$ an indecomposable, unitary, finitely semisimple, invertible bimodule category.

Let c, c^{\prime} be simple objects in $\mathcal{C}_{\mathcal{M}}^{*}$, then

$$
\begin{equation*}
\sum_{\alpha, \nu} d_{a}{ }_{\alpha}^{\beta}{ }_{\alpha}^{\beta}\left[\bowtie F_{a b c}^{d}\right]_{\mu}^{d} f_{\alpha}^{\nu}{ }_{\alpha}^{\beta^{\prime}}\left[\bowtie F_{a b c^{\prime}}^{d}\right]_{\mu^{\prime}}^{\nu}=\delta_{c}^{c^{\prime}} \delta_{\beta}^{\beta^{\prime}} \delta_{\mu}^{\mu^{\prime}} \frac{d_{e} d_{f}}{d_{c}} \tag{20}
\end{equation*}
$$

Question?

$$
a r X_{v}: 2211.01947
$$

slides © jebridgeman. bitbuckeb. io

