

Friday, 18 October 2019 3:36 pm

Toric cod	e .
0	
\bigcirc	

	$\left. \begin{array}{c} T\\ X_{m} \end{array} \right _{c}$	X_m	$\frac{R}{X_m}$	$\left. F_{0} \right _{z}$	$\left. \begin{array}{c} X_m \\ X_m \end{array} \right _{(c,z)}$	$X_m \mid X_m$	$\left. F_t \right _z$
$\left. \begin{array}{c} T\\T \end{array} \right _{(a,b)}$	$_{T}^{T \nu}{}_{(a,m^{-1}(b+c-\nu))}$	$\oplus_{\beta} \left. T \right _{(a,\beta)}$	$\frac{R}{T}\Big _{a}^{\nu}$	$\frac{R}{T} _{a}$	$\left. T \right _{\left(a,m^{-1}(b+c) ight)}$	$\oplus_{eta} \left. egin{smallmatrix} T \ (a,eta) \end{matrix} ight.$	$\frac{R}{T a}$
$\frac{L}{T} _a$	$\left. {T \over T} \right _{m = 1}^{ u} _{(a+c- u)}$	$\oplus_{\alpha} \frac{L}{T} \Big _{\alpha}$	$T_0 ^{\nu}$	T_0	$\left. T \right _{m-1(a+c)}$	$\oplus_{\alpha} \frac{L}{T} _{\alpha}$	$\left {F_0} \right $
$\frac{R}{T} _a$	$\oplus_{\beta} T_{T} _{(a,\beta)}$	$\oplus_{\beta} \frac{T}{T}\Big _{(a,\beta)}^{\nu}$	$p \cdot \frac{R}{T} _a$	$\frac{R}{T}\Big _{a}^{\nu}$	$\left. {{_T^R}} \right _a$	$p \cdot \frac{R}{T} _a$	$\oplus_{eta} T _{(a,eta)}$
$ _{T}^{F_{0}} $	$\oplus_{\alpha} \frac{L}{T} \Big _{\alpha}$	$\oplus_{\alpha} \frac{L}{T} \Big _{\alpha}^{\nu}$	$p \cdot rac{F_0}{T} $	$F_0 ^{ u}$	$ _{T}^{F_0} $	$p \cdot rac{F_0}{T} $	$\oplus_{\alpha} \frac{L}{T} _{\alpha}$
$\left. \begin{array}{c} X_{l} \\ T \end{array} \right _{a}$	$\oplus_{\alpha} \left. T \right _{(\alpha,(lm)^{-1}(a+cl-\alpha))}$	$\oplus_{\alpha} \frac{L}{T} \Big _{\alpha}$	$\oplus_{\alpha} \frac{R}{T} _{\alpha}$	$\left {{F_0} \atop T} \right $	$\left. {T}^{Xlm} \right _{a+cl}$	$\oplus_{\alpha} \frac{X_{ln}}{T} \Big _{\alpha}$	$\left {F_{i}^{l} - 1\epsilon} ight $
$\left {{F_r} \over T} \right $	$\oplus_{\alpha} \frac{L}{T} _{\alpha}$	$\oplus_{\alpha,\beta} \left. \begin{smallmatrix} T \\ T \end{smallmatrix} \right _{(\alpha,\beta)}$	$p \cdot \frac{F_0}{T}$	$\oplus_{\alpha} \frac{R}{T} _{\alpha}$	$\frac{F_{mr}}{T}$	$p \cdot \frac{F_{nr}}{T}$	$\oplus_{lpha} rac{X_{r-1t}}{T} \Big _{lpha}$
$\frac{T}{L} _{a}$	$\frac{T}{L}\Big _{m=1}^{\nu}(a+c- u)$	$\oplus_{\alpha} \frac{T}{L} _{\alpha}$	$\frac{R}{L} ^{\nu}$	$\frac{R}{L}$	$\left. \begin{array}{c} T\\ L \end{array} \right _{m-1(a+c)}$	$\oplus_{\alpha} \frac{T}{L} _{\alpha}$	
$\left. \begin{array}{c} L \\ L \\ L \end{array} \right _{(\alpha - \pi)}$	$\frac{L}{L}\Big _{(m-1(\alpha+c-n)=n)}^{\nu}\Big $	$\oplus_{\alpha} \frac{L}{L}\Big _{(\alpha,\pi)}$	$\frac{F_0}{L}\Big _{x}^{\nu}$	$F_0 _{x}$	$\left. \frac{L}{L} \right _{(m-1(\alpha\pm c), m)}$	$\oplus_{\alpha} \begin{bmatrix} L \\ L \end{bmatrix}_{(\alpha, \pi)}$	$F_0 = \Gamma$
$\frac{R}{L}$	$\oplus_{\alpha} \frac{(u+c-\nu), x}{L}$	$\oplus_{\alpha} \frac{T}{L} \Big _{\alpha}^{\nu}$	$p \cdot \frac{R}{L}$	R v	$\begin{bmatrix} m \\ L \end{bmatrix}$	$p \cdot \frac{R}{L}$	$\oplus_{\alpha} \frac{T}{L}$
$\frac{F_0}{L}$	$\oplus_{\alpha} \frac{L}{L} _{(\alpha, \pi)}$	$\oplus_{\alpha} \frac{L}{L} \Big _{(\alpha, r)}^{\nu}$	$p \cdot \frac{F_0}{L} _x$	$F_0 \frac{\nu}{r}$	F_0	$p \cdot \frac{F_0}{L} _{x}$	$\oplus \alpha \overset{L}{}_{L} [\alpha , \pi)$
X_l		$\oplus_{\alpha,\beta} \frac{L}{L} _{(\alpha,\beta)}$	$p \cdot \frac{R}{L}$	$\oplus_{\alpha} F_0 _{\alpha}$	X_{lm}	$p \cdot \frac{X_{ln}}{L}$	$\oplus_{\alpha} \frac{F_{l-1t}}{r}$
$\frac{F_r}{L}$	$\alpha r + x)$	$\oplus_{\alpha} \frac{T}{L} _{\alpha}$	$\oplus_{\alpha} \frac{F_0}{L} _{\alpha}$	R	$\frac{F_{mr}}{L}$	$\oplus_{\alpha} \frac{F_{nr}}{L} _{\alpha}$	$\left \frac{X_{r-1t}}{L} \right $
$\frac{T}{R} _{a}$	$\frac{T}{R a}$	$p \cdot \frac{T}{R} _a$	$\oplus_{\beta} \frac{R}{R} _{(a,\beta)}^{\nu}$	$\oplus_{eta} \left. \begin{smallmatrix} R \\ (a,eta) \end{smallmatrix} \right _{(a,eta)}$	$\frac{T}{R}$	$p \cdot \frac{T}{R} _a$	$\oplus_{\beta} \frac{R}{R} _{(a,\beta)}$
$\frac{L}{R}$	$\frac{L}{R}$	$p \cdot \frac{L}{R}$	$\oplus_{\alpha} \frac{F_0}{R} \Big _{\alpha}^{\nu}$	$\oplus_{\alpha} \frac{F_0}{R} \Big _{\alpha}$	$\frac{L}{R}$	$p \cdot \frac{L}{R}$	$\oplus_{\alpha} \frac{F_0}{R} _{\alpha}$
$\binom{R}{R}_{(a,x)}$	$\frac{T}{Ra}$	$\frac{T}{R}\Big _{a}^{\nu}$	$\oplus_{\beta} \left. \frac{R}{R} \right _{(a,\beta)}$	$\frac{R}{R} \left[a.m(x+z-\nu) \right]$	$\left. \begin{array}{c} R \\ R \end{array} \right _{(a.mx+z)}$	$\oplus_{\mathcal{B}} \frac{R}{R} _{(a,\beta)}$	$\left \frac{T}{R} \right _{a}$
$\frac{F_0}{R}$	$ _{R}^{L} $	$\frac{L}{R} ^{\nu}$	$\oplus_{\alpha} \frac{F_0}{R} _{\alpha}$	$F_0 \Big {\scriptstyle V \atop R} {\scriptstyle (m(x+z- u))}$	${F_0 \brack R + z}$	$\oplus_{\alpha} \frac{F_0}{R} _{\alpha}$	L
$ R^{X_l} $	$\oplus_{\alpha} {}^{T}_{R} _{\alpha}$	$p \cdot \frac{L}{R}$	$\oplus_{\alpha,\beta} \left. \begin{smallmatrix} R \\ R \end{smallmatrix} \right _{(\alpha,\beta)}$		$\frac{X_{lm}}{R}$	$p \cdot \frac{X_{ln}}{R}$	$\oplus_{\alpha} \frac{F_{l}-1}{R}\Big _{lpha}$
$\frac{F_r}{R}$	L	$\oplus_{\alpha} \frac{T}{R}\Big _{\alpha}$	$\oplus_{\alpha} \frac{F_0}{R} \Big _{\alpha}$	$\oplus_{\alpha} {}^R_R$	$\left. \begin{smallmatrix} F_{mr} \\ R \end{smallmatrix} \right _{mx+z}$	$\oplus_{\alpha} \frac{F_{nr}}{R}\Big _{\alpha}$	$\frac{X_{r-1t}}{R}$
$\frac{T}{F_0}$	$\left. \begin{smallmatrix} T \\ F_0 \end{smallmatrix} \right ^{ u}$	$p \cdot \frac{T}{F_0}$	$\oplus_{\alpha} \frac{R}{F_0} \Big _{\alpha}^{\nu}$	$\oplus_{\alpha} \left. \frac{R}{F_0} \right _{\alpha}$	$\left {{T} \atop {F_0}} \right $	$p \cdot rac{T}{F_0}$	$\oplus_{\alpha} \frac{R}{F_0}\Big _{lpha}$
$\frac{L}{F_0}\Big _x$	$F_0 \left \frac{ \nu}{x} \right $	$p \cdot \frac{L}{F_0}\Big _x$	$\oplus_{\beta} \frac{F_0}{F_0}\Big _{(x,\beta)}^{\nu}$	$\oplus_{eta} rac{F_0}{F_0} _{(x,eta)}$	$\frac{L}{F_0}\Big _x$	$p\cdot \left. \begin{smallmatrix} L\\ F_0 \end{smallmatrix} \right _x$	$\oplus_{eta} rac{F_0}{F_0} \Big _{(x,eta)}$
$\frac{R}{F_0} _x$	$\left F_0 \right $	$\frac{T}{F_0} \Big ^{\nu}$	$\oplus_{\alpha} \frac{R}{F_0} \Big _{\alpha}$	$\left. \begin{array}{c} R\\ F_0 \end{array} \right \left \begin{array}{c} u\\ m(x+z- u) \end{array} \right $	$\left. \begin{smallmatrix} R\\ F_0 \end{smallmatrix} \right _{mx+z}$	$\oplus_{\alpha} \frac{R}{F_0} \Big _{\alpha}$	F_0
$\left. F_0 \right _{(x,y)}$	$\left. rac{L}{F_0} ight _x$	$\frac{L}{F_0}\Big _x^{\nu}$	$\oplus_{\beta} \left. \begin{smallmatrix} F_0 \\ F_0 \end{smallmatrix} \right _{(x,\beta)}$	$F_0 \Big _{V = F_0 \cap (x, m(y+z- u))}$	$\left. F_0 \right _{F_0} \left _{(x,my+z)} \right $	$\oplus_{eta} \left. egin{smallmatrix} F_0 \ K_0 \end{bmatrix} (x,eta)$	$\left. rac{L}{F_0} ight _x$
$\left. \begin{smallmatrix} X_l \\ F_0 \end{smallmatrix} \right _x$	F_0	$\oplus_{\alpha} \frac{L}{F_0} \Big _{\alpha}$	$\oplus_{\alpha} \left. \begin{smallmatrix} R \\ F_0 \end{smallmatrix} \right _{\alpha}$	$\left. \oplus_{\beta} \left. \begin{smallmatrix} F_0 \\ F_0 \end{smallmatrix} \right _{(x+(lm)^{-1}(mz-\beta),\beta)}$		$\oplus_{\alpha} rac{X_{ln}}{F_0}\Big _{lpha}$	$\left rac{F_{l}}{F_{0}} ight ^{-1t}$
$\left {F_{0} \atop F_{0}} \right $	$\oplus_{\alpha} \left. \begin{smallmatrix} L \\ F_0 \end{smallmatrix} \right _{lpha}$		$\oplus_{\alpha,\beta} \left. \begin{smallmatrix} F_0 \\ F_0 \end{smallmatrix} \right _{(\alpha,\beta)}$			$p \cdot rac{F_{nr}}{F_0} $	$\oplus_{\alpha} \frac{X_{r-1t}}{F_0} \Big _{lpha}$
$\left. \begin{array}{c} T \\ X_k \end{array} \right _a$	$ \left. \begin{array}{c} T \\ X_{km} \right _{a+k(c-\nu)}^{\nu} \end{array} \right. $	ъ	$\frac{R}{X_{km}} ^{\nu}$		$\left. \begin{array}{c} T \\ X_{km} \end{array} \right _{a+ck}$	$\oplus_{\alpha} {}^{T}_{Km} _{\alpha}$	$\left {{{X_{km}}} \atop X_{km}} \right $
$\left \begin{array}{c} L \\ X_k \end{array} \right $	$X_{km} ^{ u}$	$p \cdot \frac{L}{X_{km}}$	$\oplus_{\alpha} \frac{F_0}{X_{km}} \Big _{\alpha}^{\nu}$	$\oplus_{\alpha} \frac{F_0}{X_{km}} \Big _{\alpha}$	X_{km}	$p \cdot \frac{L}{X_{km}}$	$\oplus_{\alpha} \frac{F_0}{X_{km}} \Big _{\alpha}$
$\frac{R}{X_k}$	$\oplus_{\alpha} \frac{T}{X_{km}} \Big _{\alpha}$	$\oplus_{\alpha} {T \atop X_{km}} \Big _{\alpha}^{\nu}$	$p \cdot \frac{R}{X_{km}}$	$\frac{R}{X_{km}} ^{ u}$	$\left X_{km} \right $	$p \cdot rac{R}{X_{km}}$	$\oplus_{lpha} rac{T}{X_{km}} \Big _{lpha}$
$\left. \begin{array}{c} F_0 \\ X_k \end{array} \right _x$	X_{km}	$\sum_{X_{km}} ^{\nu}$	$\oplus_{\alpha} \frac{F_0}{X_{km}} \Big _{\alpha}$	$\frac{F_0}{X_{km}}\Big _{k=1}^{\nu}(kx+z-\nu)$	$\left. \begin{smallmatrix} F_0 \\ X_{km} \end{smallmatrix} \right _{x+(km)^{-1}z}$	$\oplus_{lpha} rac{F_0}{X_{km}} \Big _{lpha}$	X_{km}^L
$\left. \begin{array}{c} X_k \\ X_k \end{array} \right _{(a,x)}$	$\left. \begin{array}{c} T \\ X_{km} \end{array} \right _{a+ck}$	X_{km}	$\left \begin{smallmatrix} R \\ X_{km} \end{smallmatrix} \right $	$\left. egin{smallmatrix} F_0 \ X_{km} \end{matrix} \right _{k-1(x+z)}$	$\left. \begin{array}{c} X_{km} \\ X_{km} \\ \left (a + ck, mx + z) \right. \end{array} \right.$	$\left \begin{array}{c} X_{kn} \\ X_{km} \\ \end{array} \right $	$\left. rac{F_{k-1t}}{X_{km}} ight _{k-1(at)+mx+z}$
$\left {{_{X_{k}}^{X_{l}}}} \right $	$\oplus_{\alpha} {T \atop X_{km}} \Big _{\alpha}$	$p\cdot \frac{L}{X_{km}}\Big $	$p \cdot \frac{R}{X_{km}}$	$\oplus_{lpha} rac{F_0}{X_{km}}\Big _{lpha}$	$X_{lm} X_{km}$	$\begin{cases} \oplus_{\alpha,\beta} X_{km}^{X_{km}} _{(\alpha,\beta)} & km = ln \\ p \cdot X_{ln}^{X_{ln}} & \text{otherwise} \end{cases}$	$\oplus_{\alpha} \frac{F_{l-1t}}{X_{km}} \big _{\alpha}$
$\left. \begin{smallmatrix} F_r \\ X_k \end{smallmatrix} \right _x$	$\left \begin{array}{c} L \\ X_{km} \end{array} \right $	$\oplus_{\alpha} {T \atop X_{km}} \Big _{\alpha}$	$\oplus_{\alpha} {F_0 \atop X_{km}} \Big _{\alpha}$	$\left \begin{array}{c} R \\ X_{km} \end{array} \right $	$\left. \begin{array}{c} F_{mr} \\ X_{km} \\ ckmr+mx+z \end{array} \right.$	$\oplus \alpha F_{nr} _{\alpha}$	$\begin{cases} \oplus_{X_{xm}}^{X_{km}} _{(\alpha,mx+z-mr\alpha)} & km = r^{-1}t \\ X_{r^{-1}t} & \text{otherwise} \end{cases}$
T_{F}	$T_{F_{-}} ^{\nu}$	$p \cdot \frac{T}{F}$	$\oplus_{\alpha} \stackrel{R}{_{F}}$	$\oplus_{\alpha} {}_{F}^{R}$	T	$p \cdot \frac{T}{F}$	$\oplus \alpha \stackrel{R}{F}$
$\frac{L}{F_a}$	$\frac{L}{F_{ma}} \frac{\nu}{c_{\alpha-\nu\alpha+v}}$	$\oplus_{\alpha} \frac{L}{F_{ma}} \Big _{\alpha}$	$F_0 F_{m,a} \nu$	F_0	$F_{ma} \Big _{ca+m}$	$\oplus \alpha F_{ma}$	F_{ma}
$F_q _x$	F_{mq}	$\frac{T}{F_{mq}} ^{\nu}$	$\oplus_{\alpha} \frac{R}{F_{mq}} \Big _{\alpha}$	$\frac{R}{F_{mq}}\Big _{m(x+z- u)}^{ u}$	$\frac{R}{F_{mq}}\Big _{mx+z}$	$\oplus_{\alpha} \frac{R}{F_{mq}} _{\alpha}$	F_{mq}
$F_0 $	$\oplus_{\alpha} \frac{L}{F_{mq}} \Big _{\alpha}$	$\oplus_{\alpha} \frac{L}{F_{mq}} \Big _{\alpha}^{\nu}$	$p \cdot rac{F_0}{F_{mq}}$	F_{mq}	F_{mq}	$p \cdot rac{F_0}{F_{mq}} $	
$\left. \begin{smallmatrix} X_l \\ F_q \end{smallmatrix} \right _x$	F_{mq}	$\oplus_{\alpha} {L \atop F_{mq}} \Big _{\alpha}$	$\oplus_{\alpha} \left. \begin{smallmatrix} R \\ F_{mq} \end{smallmatrix} \right _{\alpha}$	F_{m_q}	$\left. \begin{smallmatrix} X_{lm} \\ F_{mq} \end{smallmatrix} \right _{clmq+mx+z}$	$\oplus_{\alpha} \left. \begin{smallmatrix} X_{ln} \\ F_{mq} \end{smallmatrix} \right _{\alpha}$	$\begin{cases} \bigoplus_{r} \alpha_{F_{mq}}^{F_{mq}} _{(\alpha,mx+z-lm\alpha)} & qm = l^{-1}t \\ f_{l}^{-1}t & \text{otherwise} \end{cases}$
$\left. \begin{smallmatrix} F_q \\ F_q \end{smallmatrix} \right _{(x,y)}$	$F_{mq} \left _{cq+x}\right $	F_{mq}	F_{mq}	$\left. F_{mq} \right _{m(y+z)}$	$\left. \begin{matrix} F_{mq} \\ F_{mq} \end{matrix} \right _{(cq+x,my+z)}$	$\frac{F_{nq}}{F_{mq}}$	$\left. \frac{X_{q-1t}}{F_{mq}} \right _{q^{-1}(tx)+my+z}$
$\left. \begin{smallmatrix} F_{T} \\ F_{q} \end{smallmatrix} \right $	$\oplus_{\alpha} \frac{L}{F_{mq}}\Big _{\alpha}$	$p \cdot \frac{T}{F_{mq}}$	$p \cdot rac{F_0}{F_{mq}}$	$\oplus_{lpha} \left. \begin{smallmatrix} R & \\ R & m_q \end{smallmatrix} \right _{lpha}$	$\frac{F_{mr}}{F_{mq}}$	$\begin{cases} \oplus_{\alpha,\beta} F_{mq}^{F_{mq}} _{(\alpha,\beta)} & qm = rn \\ p \cdot F_{rr}^{F_{rr}} & \text{otherwise} \end{cases}$	$\oplus_{\alpha} \frac{X_{r-1t}}{F_{mq}} \big _{\alpha}$
						1 hui	

More groval computations

•
$$\phi : A \xrightarrow{ss alg aver C} End(A)$$

• $\phi : A \xrightarrow{b} End(A)$
 $\alpha \mapsto \phi_{\alpha}$
 $\varphi_{\alpha}(b) = \alpha b - b \alpha$
Kernel of $\phi = Z(A)$

Find central idempotents:

1) Pick ale Z(A) randonly

Eigenvectors e: Sf La

a eiej = 1; eiej = 2; eiej

$$e_{i}e_{j} = 0 \quad unless \quad \lambda_{i} = \lambda_{j}$$

$$(ranchom ly undersen)$$

$$uon f have this$$

$$e_{i}^{2} = \mu_{j}e_{i} \quad \longrightarrow \quad \overline{e_{i}} = \frac{1}{\mu_{i}}e_{i}$$

Now we know that

B:= Aei is full matrix algebra. $D_{cc} \circ p_{ose} \qquad \mathcal{B}_{i} \rightarrow \mathcal{M}_{N_{c} \times N_{c}^{i}}(\ell)$