Ribbon Operators in 2D Topologically Ordered Spin Systems

Jacob C Bridgeman, Steven T Flammia, David Poulin
ARC Centre of Excellence in Engineered Quantum Systems The University of Sydney

$12^{\text {th }}$ November 2015

Overview

- Understanding quantum matter
- 2 dimensional topologically ordered models
- Numerically very challenging: contracting PEPS is PostBQP hard (PostBQP contains QMA, NP, etc.)

Rob Lavinsky, iRocks.com - CC-BY-SA-3.0

Overview

- Understanding quantum matter
- 2 dimensional topologically ordered models
- Numerically very challenging: contracting PEPS is PostBQP hard (PostBQP contains QMA, NP, etc.)
- Exotic phases, disordered in the conventional sense
- No local order parameter, no symmetry
- New exchange statistics not observed in nature

Overview

- Understanding quantum matter
- 2 dimensional topologically ordered models
- Numerically very challenging: contracting PEPS is PostBQP hard (PostBQP contains QMA, NP, etc.)
- Exotic phases, disordered in the conventional sense
- No local order parameter, no symmetry
- New exchange statistics not observed in nature
- Topological codes
- Quantum information protected against arbitrary errors

Conventional ordering: Ising Model

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Conventional ordering: Ising Model

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Conventional ordering: Ising Model

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Conventional ordering: Ising Model

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}-h \sum_{j} X_{j}
$$

Conventional ordering: Ising Model

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}-h \sum_{j} X_{j}
$$

- Quantum phases: $T \rightarrow 0$ limit
- Only ground states have nonzero Boltzmann weight

Conventional ordering: Ising Model

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}-h \sum_{j} X_{j}
$$

- Quantum phases: $T \rightarrow 0$ limit
- Only ground states have nonzero Boltzmann weight
- Magnetisation $\frac{1}{N} \sum\left\langle Z_{j}\right\rangle$
- Can detect ordering with local measurement

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

Ising Model: Excitations

$$
H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}
$$

A Simple Example: \mathbb{Z}_{2} Toric Code

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z{ }_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z{ }_{Z}^{Z} Z
$$

- Every term commutes with every other

A Simple Example: \mathbb{Z}_{2} Toric Code

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z{ }_{Z}^{Z} Z
$$

- Every term commutes with every other
- Exactly solvable - a good playground

A Simple Example: \mathbb{Z}_{2} Toric Code

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z{ }_{Z}^{Z} Z
$$

- Every term commutes with every other
- Exactly solvable - a good playground
- Supports many of the characteristic properties of topological ordered models

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - Excitations

$$
H=-\sum_{\text {blue }} X{ }_{X}^{X} X-\sum_{\text {green }} Z_{Z}^{Z} Z
$$

A Simple Example: \mathbb{Z}_{2} Toric Code - S Matrix

A Simple Example: \mathbb{Z}_{2} Toric Code - S Matrix

A Simple Example: \mathbb{Z}_{2} Toric Code - S Matrix

A Simple Example: \mathbb{Z}_{2} Toric Code - S Matrix

A Simple Example: \mathbb{Z}_{2} Toric Code - S Matrix

A Simple Example: \mathbb{Z}_{2} Toric Code - S Matrix

A Simple Example: \mathbb{Z}_{2} Toric Code - S Matrix

A Simple Example: \mathbb{Z}_{2} Toric Code - S Matrix

Away from Solvable Points: Ribbon Operators

- Stringlike $=$ ribbon operators

Away from Solvable Points: Ribbon Operators

- Stringlike $=$ ribbon operators
- Commute with the Hamiltonian in the bulk
- Quasiparticle excitations localised around the ends

Away from Solvable Points: Ribbon Operators

- Stringlike $=$ ribbon operators
- Commute with the Hamiltonian in the bulk
- Quasiparticle excitations localised around the ends
- Exotic exchange statistics

Away from Solvable Points: Ribbon Operators

- Stringlike $=$ ribbon operators
- Commute with the Hamiltonian in the bulk
- Quasiparticle excitations localised around the ends
- Exotic exchange statistics

- Should not depend too much on the specific support chosen
- Deformable

Away from Solvable Points: Ribbon Operators

- Cost function \Longrightarrow numerical optimisation

Away from Solvable Points: Ribbon Operators

- Cost function \Longrightarrow numerical optimisation
- $C(R ; \eta)=\frac{1}{\operatorname{supp} R}\left(\|[R, H]\|^{2}+\|R L-\eta L R\|^{2}\right)$

Away from Solvable Points: Ribbon Operators

- Cost function \Longrightarrow numerical optimisation
- $C(R ; \eta)=\frac{1}{\operatorname{supp} R}\left(\|[R, H]\|^{2}+\|R L-\eta L R\|^{2}\right)$
- Search space: minimally entangling operators
- Matrix product operators of constant bond dimension

Away from Solvable Points: Ribbon Operators

- Cost function \Longrightarrow numerical optimisation
- $C(R ; \eta)=\frac{1}{\operatorname{supp} R}\left(\|[R, H]\|^{2}+\|R L-\eta L R\|^{2}\right)$
- Search space: minimally entangling operators
- Matrix product operators of constant bond dimension
- Algorithm
- (Modified) DMRG

Observations: Checking things are working

Observations: Checking things are working

$H=J H_{\mathbb{Z}_{N}}$ Toric Code $-\frac{h}{2} \sum\left(Z_{j}+Z_{j}^{\dagger}\right)-\frac{\lambda}{4} \sum_{\langle j, k\rangle}\left(X_{j}+X_{j}^{\dagger}\right)\left(X_{k}+X_{k}^{\dagger}\right)$

Toric Code with Z Field

$$
H=H_{\mathbb{Z}_{2}} \text { Toric Code }-h \sum Z_{j}
$$

The Kitaev Honeycomb Model

- Frustrated model
- Noncommuting Hamiltonian, symmetries are tricky

The Kitaev Honeycomb Model

- Frustrated model
- Noncommuting Hamiltonian, symmetries are tricky
- Known to be in the same phase as \mathbb{Z}_{2} Toric Code
- Form of ribbon operators not known

The Kitaev Honeycomb Model

- Frustrated model
- Noncommuting Hamiltonian, symmetries are tricky
- Known to be in the same phase as \mathbb{Z}_{2} Toric Code
- Form of ribbon operators not known

Review

- New technique for identifying topological order
- Operator first approach reduces dimensionality

Review

- New technique for identifying topological order
- Operator first approach reduces dimensionality
- Can be applied to models which cannot be solved analytically
- Identifying topological order in more realistic models

Review

- New technique for identifying topological order
- Operator first approach reduces dimensionality
- Can be applied to models which cannot be solved analytically
- Identifying topological order in more realistic models
- Seems to work for Abelian topological order
- How to extend to the non-Abelian case? We have some ideas

Review

- New technique for identifying topological order
- Operator first approach reduces dimensionality
- Can be applied to models which cannot be solved analytically
- Identifying topological order in more realistic models
- Seems to work for Abelian topological order
- How to extend to the non-Abelian case? We have some ideas
- Can we prove anything about the method?
- If we restrict to unitaries, we can prove ground state degeneracy using numerical output

Topologically Encoded Qubit: Quantum Compass Model/Bacon Shor Code

$$
H=-J \sum_{i, j}\left(X_{i, j} X_{i, j+1}+Z_{i, j} Z_{i+1, j}\right)
$$

Topologically Encoded Qubit: Quantum Compass Model/Bacon Shor Code

$$
H=-J \sum_{i, j}\left(X_{i, j} X_{i, j+1}+Z_{i, j} Z_{i+1, j}\right)
$$

Topologically Encoded Qubit: Quantum Compass Model/Bacon Shor Code

$$
H=-J \sum_{i, j}\left(X_{i, j} X_{i, j+1}+Z_{i, j} Z_{i+1, j}\right)
$$

