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• Understanding quantum matter
• 2 dimensional topologically ordered models

• Numerically very challenging: contracting PEPS is PostBQP hard (PostBQP contains QMA, NP, etc.)

• Exotic phases, disordered in the conventional sense

• No local order parameter, no symmetry

• New exchange statistics not observed in nature

• Topological codes
• Quantum information protected against arbitrary errors
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Conventional ordering: Ising Model

H = −J
∑
〈i,j〉

ZiZj

− h
∑
j

Xj

• Quantum phases: T → 0 limit
• Only ground states have nonzero
Boltzmann weight

• Magnetisation 1
N

∑
〈Zj〉

• Can detect ordering with local
measurement
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• Every term commutes with
every other

• Exactly solvable - a good
playground
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characteristic properties of
topological ordered models
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Away from Solvable Points: Ribbon Operators

• Stringlike = ribbon operators

• Commute with the Hamiltonian in the bulk
• Quasiparticle excitations localised around the ends

• Exotic exchange statistics
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− η

Rb Ra

Ra Rb

= 0

• Should not depend too much on the specific support chosen
• Deformable
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Away from Solvable Points: Ribbon Operators

• Cost function =⇒ numerical optimisation

• C(R; η) = 1
suppR

(
‖[R,H]‖2 + ‖RL− ηLR‖2

)
• Search space: minimally entangling operators
• Matrix product operators of constant bond dimension

• Algorithm
• (Modified) DMRG
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Toric Code with Z Field

H = HZ2 Toric Code − h
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The Kitaev Honeycomb Model

• Frustrated model
• Noncommuting Hamiltonian, symmetries are tricky

• Known to be in the same phase as Z2 Toric Code
• Form of ribbon operators not known
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Review

• New technique for identifying topological order
• Operator first approach reduces dimensionality

• Can be applied to models which cannot be solved analytically
• Identifying topological order in more realistic models

• Seems to work for Abelian topological order
• How to extend to the non-Abelian case? We have some ideas

• Can we prove anything about the method?
• If we restrict to unitaries, we can prove ground state degeneracy using numerical output
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