Anomalies and entanglement renormalization

Jacob Bridgeman and Dominic Williamson

arXiv:1703.07782

$H = -a\sum(X_j + \tilde{X}_j) - b\sum(Z_jZ_{j+1} + \tilde{Z}_j\tilde{Z}_{j+1}) - c\sum(Z_j\tilde{X}_jZ_{j+1} + \tilde{Z}_jX_{j+1}\tilde{Z}_{j+1})$

 $\mathbb{Z}_2 \times \mathbb{Z}_2$ on-site symmetry

$$H = -a\sum(X_j + \tilde{X}_j) - b\sum(Z_jZ_{j+1} + \tilde{Z}_j\tilde{Z}_{j+1}) - c\sum(Z_j\tilde{X}_jZ_{j+1} + \tilde{Z}_jX_{j+1}\tilde{Z}_{j+1})$$

$$(1,0)\mapsto \bigotimes_{j}X_{j}, \qquad (0,1)\mapsto \bigotimes_{j}\tilde{X}_{j}$$

 $\mathbb{Z}_2\times\mathbb{Z}_2$ on-site symmetry

$$H = -a\sum(X_j + \tilde{X}_j) - b\sum(Z_jZ_{j+1} + \tilde{Z}_j\tilde{Z}_{j+1}) - c\sum(Z_j\tilde{X}_jZ_{j+1} + \tilde{Z}_jX_{j+1}\tilde{Z}_{j+1})$$

$$(1,0)\mapsto \bigotimes_{j}X_{j}, \qquad (0,1)\mapsto \bigotimes_{j}\tilde{X}_{j}$$

 $\mathbb{Z}_2\times\mathbb{Z}_2$ on-site symmetry

$$H = -a\sum(X_j + \tilde{X}_j) - b\sum(Z_jZ_{j+1} + \tilde{Z}_j\tilde{Z}_{j+1}) - c\sum(Z_j\tilde{X}_jZ_{j+1} + \tilde{Z}_jX_{j+1}\tilde{Z}_{j+1})$$

$$(1,0)\mapsto\bigotimes_{j}X_{j},\qquad (0,1)\mapsto\bigotimes_{j}\tilde{X}_{j}$$

 $\mathbb{Z}_2 \times \mathbb{Z}_2$ on-site symmetry

Phase Diagram

$$H = -a\sum(X_j + \tilde{X}_j) - b\sum(Z_jZ_{j+1} + \tilde{Z}_j\tilde{Z}_{j+1}) - c\sum(Z_j\tilde{X}_jZ_{j+1} + \tilde{Z}_jX_{j+1}\tilde{Z}_{j+1})$$

a+b+c=3

Duality Transformations

$$H = -a\sum(X_j + \tilde{X}_j) - b\sum(Z_jZ_{j+1} + \tilde{Z}_j\tilde{Z}_{j+1}) - c\sum(Z_j\tilde{X}_jZ_{j+1} + \tilde{Z}_jX_{j+1}\tilde{Z}_{j+1})$$

► ISING

 $egin{array}{lll} X_j \leftrightarrow Z_{j-1}Z_j \ ilde X_j \leftrightarrow ilde Z_j ilde Z_{j+1} \ a \leftrightarrow b \end{array}$

 $X_{j} \leftrightarrow \tilde{Z}_{j-1} X_{j} \tilde{Z}_{j}$ $\tilde{X}_{j} \leftrightarrow Z_{j} \tilde{X}_{j} Z_{j+1}$ $a \leftrightarrow c$

Phase Diagram

Phase Diagram

Tensor Networks

Tensor

$\alpha - \overrightarrow{A} - \beta = (A^{i})_{\alpha\beta} \in \mathbb{C}$

Contraction

 $= (A^i B^j)_{\alpha \gamma}$

Matrix Product State

$$|\psi
angle = \sum_{i_1, i_2, \cdots, i_N = 0}^{d-1} \operatorname{Tr} \left(A_{i_1} A_{i_2} \cdots A_{i_N}
ight) |i_1
angle \otimes |i_2
angle \otimes \cdots \otimes |i_N
angle$$

Matrix Product Operator

Multi-scale Entanglement Renormalization Ansatz

Anomalous MPO Symmetry

MPO symmetry

$$U_g U_h = U_{gh}$$

For our example

$$H = -a\sum(X_j + \tilde{X}_j) - b\sum(Z_jZ_{j+1} + \tilde{Z}_j\tilde{Z}_{j+1}) - c\sum(Z_j\tilde{X}_jZ_{j+1} + \tilde{Z}_jX_{j+1}\tilde{Z}_{j+1})$$

$$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2 ext{ MPO symmetry}$$

 $(1,0,0) \mapsto \bigotimes_j X_j, \qquad (0,1,0) \mapsto \bigotimes_j ilde{X}_j, \qquad (0,0,1) \mapsto \prod_j CZ_{j,j+1}$

 ϕ

$$\frac{(g_0, g_1, g_2)\phi(g_0, g_1g_2, g_3)\phi(g_1, g_2, g_3)}{\phi(g_0g_1, g_2, g_3)\phi(g_0, g_1, g_2g_3)} = 1$$

$$\bigcup$$

 $[\phi]\in\mathcal{H}^3(\mathcal{G},\mathsf{U}(1))$

For our Example

MPO tensor: $\begin{array}{ccc}
\stackrel{i+\alpha_{1} & j+\alpha_{2}}{\underbrace{\qquad} & & \\
\stackrel{i}{\underbrace{\qquad} & i \\ i & j \\ i & j \\ \hline \\
 & \\
 & \\
 & \\
\end{array} = \sum_{k=0}^{1} (-1)^{j\alpha_{3}(k-i)} |i\rangle \langle k|$ Reduction tensor: $\begin{array}{cccc}
\stackrel{i+\alpha_{1} & j+\alpha_{2}}{\underbrace{\qquad} & \\
\stackrel{i}{\underbrace{\qquad} & \\
 & \\
 & \\
 & \\
 & \\
\end{array} = \sum_{k=0}^{1} (-1)^{-x\alpha_{2}\beta_{3}} \left| \frac{x+\alpha_{1}}{x} \right\rangle \langle i|$

Cocycle: $\phi(\alpha, \beta, \gamma) = (-1)^{\alpha_1 \beta_2 \gamma_3}$

$$[\phi]\cong (0,0,1)\in \mathcal{H}^3(\mathbb{Z}_2^3,\mathsf{U}(1))\cong \mathbb{Z}_2^3 imes \mathbb{Z}_2^3 imes \mathbb{Z}_2^3$$

'type-III'

No Gapped MPO-Symmetric Groundstates

MPO Symmetry in MERA

MERA

Symmetry in MERA: on-site vs Anomalous

Representation theory

?????

Disentangling an Anomalous Symmetry

For the example

$$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2$$
 symmetry $(1,0,0) \mapsto \bigotimes_j rac{\chi_j}{\chi_j}, \qquad (0,1,0) \mapsto \bigotimes_j rac{\chi_j}{\chi_j}, \qquad (0,0,1) \mapsto \prod_j CZ_{j,j+1}$

Numerical Results for a = c: Energy Density

$$H = -a\sum(X_j + \tilde{X}_j) - b\sum(Z_jZ_{j+1} + \tilde{Z}_j\tilde{Z}_{j+1}) - c\sum(Z_j\tilde{X}_jZ_{j+1} + \tilde{Z}_jX_{j+1}\tilde{Z}_{j+1})$$

Quick aside on conformal field theory

- ▶ Field theory describing the low energy physics at a gapless point
- ► 'Conformal'=Scale invariant (no gap ⇒ no energy scale)
- Scaling Dimensions
- Conformal spins

Scaling Dimensions

Conformal spins

$$\langle \phi_x \phi_y
angle \sim rac{1}{|x-y|^\Delta}$$

$$p = \exp\left(\frac{2\pi i}{N}s\right)$$

 $\mathcal{S}(\phi) \sim \exp(-\Delta)$

 $\Delta \propto E_n/E_0$

Numerical Results for a = c: Scaling Dimensions

conf. spin: $s_{e,m} = em$

Topological Sectors in MERA

Twisting by a Symmetry

Twisting by an MPO Symmetry

Twisted Translation and Scaling Operators

Twisted translation operator

$$\tau_{g} := \cdots \longrightarrow \eta_{g} \longrightarrow \cdots$$

Twisted scaling superoperator

Fractional Conformal Spin

For local fields

 $\tau_1^L = \mathsf{Id}$

 \implies conformal spins are integers

In g twisted sector

$$\tau_g^L = T_g$$

gives a Dehn twist

Fractional Conformal Spin

Dehn twist

$$\mathcal{T}_g^{n_g} = (-1)^{[\phi_g]} \mathsf{Id}$$

$$\implies$$
 conformal spins may lie in $\mathbb{Z}+rac{1}{n_g}\mathbb{Z}_{n_g}+rac{[\phi_g]}{n_g^2}$

For our example, some sectors have integers (bosonic), some have $\mathbb{Z} + \frac{1}{2}$ (fermionic) and some $\mathbb{Z} \pm \frac{1}{4}$ ((anti-)semionic)

Projective Symmetry of Twists

g-twisted field transforms under the projective rep

$$V_h^{(g)} = \sum_{\phi \neq \phi} h$$

with 2-cocycle given by the slant product of the anomaly label ϕ

For our example

Trivial twist g = (0, 0, 0) : 8 linear irreps. 7 nontrivial twists : 2 projective irreps. each

22 irreducible topological sectors

Projective irreps are 2 dimensional \implies nonabelian fusion

Numerical Results for a = c: Topological Sectors

Numerical Results for a = c: Topological Sectors

Topological Sectors in Our Example

Topological Sector		Topo spin	Scal Dim	Conf spin	Parameters					
Twist	Proj. Irrep.			com. spin	i aranteters					
(110)	β^3_+	0	$e^2 + m^2 R^2$	om	$a \in \mathbb{Z} + \frac{1}{2} m \in \mathbb{Z}$	$em \in \mathbb{Z}$				
	β_{-}^{3}	$\frac{1}{2}$	$\frac{1}{R^2} + \frac{1}{4}$	em	$e \in \mathbb{Z} + \overline{2}, m \in \mathbb{Z}$	$em \in \mathbb{Z} + rac{1}{2}$				
(111)	γ_+	<u>3</u> 4	$e^2 + m^2 R^2$	em	$e m \in \mathbb{Z} + \frac{1}{2}$	$em \in \mathbb{Z} + rac{3}{4}$				
	γ	$\frac{1}{4}$	$R^2 + 4$	CIII	$c, m \in \mathbb{Z} + \frac{1}{2}$	$em \in \mathbb{Z} + rac{1}{4}$				

Correlation functions

Nonzero C_{ab}^c restricted by topological sectors: c must have twist gh and transform under an appropriate projective irrep.

Fusion rules

$\mathbf{a} \times \mathbf{b}$	χ^1_+	χ^2_+	χ^3_+	χ^4_+	χ^1	χ^2_{-}	χ^3_{-}	χ^4	α_{+}^{1}	α_{-}^{1}	α_{+}^{2}	α_{-}^{2}	β_+^3	β_{-}^{3}	α_+^3	α <u>3</u>	β_{+}^{2}	β_{-}^{2}	β_{+}^{1}	β_{-}^{1}	γ_+	γ_{-}
χ^1_+	χ^1_+	χ^2_+	χ^3_+	χ^4_+	χ^1	χ^2_{-}	χ^3	χ^4	α_{+}^{1}	α_{-}^{1}	α_+^2	α_{-}^{2}	β_+^3	β_{-}^{3}	α_+^3	α ³	β_+^2	β_{-}^{2}	β_{+}^{1}	β_{-}^{1}	γ_+	γ_{-}
χ^2_+	χ^2_+	χ^1_+	χ^4_+	χ^3_+	χ^2_{-}	χ^1	χ^4	χ^3	α_{-}^{1}	α_{+}^{1}	α_{+}^{2}	α_{-}^{2}	β_{-}^{3}	β_+^3	α_+^3	α_{-}^{3}	β_{-}^{2}	β_{+}^{2}	β_{+}^{1}	β_{-}^{1}	γ_{-}	γ_+
χ^3_{\pm}	χ^3_+	χ^4_+	χ^1_+	χ^2_+	χ^3	χ^4	χ^1	χ^2_{-}	α_{+}^{1}	α_{-}^{1}	α_{-}^{2}	α_{+}^{2}	β_{-}^{3}	β_{+}^{3}	α_+^3	α_{-}^{3}	β_{+}^{2}	β_{-}^{2}	β_{-}^{1}	β_{+}^{1}	γ_{-}	γ_+
χ^4_{\pm}	χ^4_+	χ^3_+	χ^2_+	χ^1_+	χ^4_{-}	χ^3_{-}	χ^2_{-}	χ^1	α_{-}^{1}	α_{+}^{1}	α_{-}^{2}	α_{+}^{2}	β_{+}^{3}	β_{-}^{3}	α_+^3	α_{-}^{3}	β_{-}^{2}	β_{+}^{2}	β_{-}^{1}	β_{+}^{1}	γ_+	γ_{-}
χ^1_{-}	χ^1	χ^2	χ^3	χ^4	χ^1_+	χ^2_+	χ^3_+	χ^4_+	α_{+}^{1}	α_{-}^{1}	α_{+}^{2}	α_{-}^{2}	β_{+}^{3}	β_{-}^{3}	α_{-}^{3}	α_+^3	β_{-}^{2}	β_{+}^{2}	β_{-}^{1}	β_{+}^{1}	γ_{-}	γ_+
χ^2_{-}	χ^2	χ^1	χ^4	χ^3	χ^2_+	χ^1_+	χ^4_+	χ^3_+	α_{-}^{1}	α_{+}^{1}	α_{+}^{2}	α_{-}^{2}	β_{-}^{3}	β_+^3	α_{-}^{3}	α_+^3	β_{+}^{2}	β_{-}^{2}	β_{-}^{1}	β^{1}_{+}	γ_+	γ_{-}
χ^3_{-}	χ^3	χ^4	χ^1	χ^2	χ^3_+	χ^4_+	χ^1_+	χ^2_+	α_{+}^{1}	α_{-}^{1}	α_{-}^{2}	α_{+}^{2}	β_{-}^{3}	β_{+}^{3}	α_{-}^{3}	α_+^3	β_{-}^{2}	β_{+}^{2}	β_{+}^{1}	β_{-}^{1}	γ_+	γ_{-}
χ^4	χ^4	χ^3	χ^2	χ^1	χ^4_+	χ^3_+	χ^2_+	χ^1_+	α_{-}^{1}	α_{+}^{1}	α_{-}^{2}	α_{+}^{2}	β_+^3	β_{-}^{3}	α ³	α_+^3	β_{+}^{2}	β_{-}^{2}	β_{+}^{1}	β_{-}^{1}	γ_{-}	γ_+
α^1_+	α^1_+	α_{-}^{1}	α^1_+	α_{-}^{1}	α^1_+	α_{-}^{1}	α^1_+	α_{-}^{1}	$\chi^{1}_{+} \chi^{3}_{+}$ $\chi^{1}_{-} \chi^{3}_{-}$	$\begin{array}{ccc} \chi^2_+ & \chi^a_+ \\ \chi^2 & \chi^4 \end{array}$	β^3_+ β^3	β^3_+ β^3	α^2_+ α^2	α^2_+ α^2	β_{+}^{2} β_{-}^{2}	β_{+}^{2} β_{-}^{2}	α^3_+ α^3	α^3_+ α^3	γ_+ γ	γ_+ γ	β^{1}_{+} β^{1}_{-}	β^{i}_{+} β^{1}_{-}
α_{-}^{1}	α^1	α^1_+	α^1	α^1_+	α^1	α^1_+	α^1	α^1_+	$\chi^2_+ \chi^4_+ \chi^4 \chi^2 \chi^4$	$\begin{array}{ccc} \chi^1_+ & \chi^3_+ \\ \chi^1 & \chi^3 \end{array}$	β_{+}^{3} β_{-}^{3}	β^3_+ β^3	α_+^2 α^2	α_+^2 α^2	β_{+}^{2} β_{-}^{2}	β_+^2 β^2	α^3_+ α^3	α^3_+ α^3	γ_+ γ	γ_+ γ	β^1_+ β^1	β^1_+ β^1
α_{+}^{2}	α_+^2	α_+^2	α_{-}^{2}	α_{-}^{2}	α_+^2	α_+^2	α_{-}^{2}	α_{-}^{2}	β^3_+ β^3	β^3_+ β^3	$\begin{array}{ccc} \chi^1_+ & \chi^2_+ \\ \chi^1 & \chi^2 \end{array}$	$\begin{array}{ccc} \chi^3_+ & \chi^4_+ \\ \chi^3 & \chi^4 \end{array}$	α^1_+ α^1	α^1_+ α^1	β^1_+ β^1	β^1_+ β^1	γ_+ γ	γ_+ γ	α^3_+ α^3	α^3_+ α^3	β_+^2 β^2	$\beta_+^2 = \beta^2$
α_{-}^{2}	α_{-}^{2}	α_{-}^{2}	α_+^2	α_+^2	α_{-}^{2}	α_{-}^{2}	α_+^2	α_+^2	β^3_+ β^3	β^3_+ β^3	$\begin{array}{ccc} \chi_{+}^{3} & \chi_{+}^{4} \\ \chi_{-}^{3} & \chi_{-}^{4} \end{array}$	$\begin{array}{ccc} \chi_{+}^{1} & \chi_{+}^{2} \\ \chi_{-}^{1} & \chi_{-}^{2} \end{array}$	α^1_+ α^1	α^1_+ α^1	β^1_+ β^1	β^1_+ β^1	γ_+ γ	γ_+ γ	α^3_+ α^3	α_+^3 α^3	β_+^2 β^2	$\beta_+^2 = \beta^2$
β_+^3	β_+^3	β_{-}^{3}	β_{-}^{3}	β^3_+	β_+^3	β_{-}^{3}	β_{-}^{3}	β_+^3	α^2_+ α^2	α^2_+ α^2	α^1_+ α^1	α^1_+ α^1	$\begin{array}{ccc} \chi_{+}^{1} & \chi_{+}^{4} \\ \chi_{-}^{1} & \chi_{-}^{4} \end{array}$	$\begin{array}{ccc} \chi^2_+ & \chi^3_+ \\ \chi^2 & \chi^3 \end{array}$	γ_+ γ	γ_+ γ	β^{1}_{+} β^{1}_{-}	β^1_+ β^1	β_+^2 β^2	β_+^2 β^2	α^3_+ α^3	α^3_+ α^3
β_{-}^{3}	β_{-}^{3}	β_+^3	β_+^3	β_{-}^{3}	β_{-}^{3}	β^3_+	β_+^3	β_{-}^{3}	α_+^2 α^2	α_{+}^{2} α_{-}^{2}	α^1_+ α^1	α^1_+ α^1	$\begin{array}{ccc} \chi^2_+ & \chi^3_+ \\ \chi^2 & \chi^3 \end{array}$	$\chi^1_+ \chi^4_+$ $\chi^1 \chi^4$	γ ₊ γ_	γ ₊ γ	β^1_+ β^1	β^1_+ β^1	β_+^2 β^2	β_+^2 β^2	α^3_+ α^3	α^3_+ α^3
α_+^3	α_+^3	α_+^3	α_+^3	α_+^3	α_{-}^{3}	α_{-}^{3}	α_{-}^{3}	α_{-}^{3}	$\beta_+^2 = \beta^2$	$\beta_+^2 = \beta^2$	β^1_+ β^1	β^1_+ β^1	γ ₊ γ	γ ₊ γ_	$\begin{array}{ccc} \chi_{+}^{1} & \chi_{+}^{2} \\ \chi_{+}^{3} & \chi_{+}^{4} \end{array}$	$\begin{array}{ccc} \chi_{1}^{1} & \chi_{-}^{2} \\ \chi_{-}^{3} & \chi_{-}^{4} \end{array}$	α^1_+ α^1	α^1_+ α^1	α_{+}^{2} α^{2}	α_{+}^{2} α^{2}	β^3_+ β^3	β^3_+ β^3
α_{-}^{3}	α_{-}^{3}	α_{-}^{3}	α_{-}^{3}	α_{-}^{3}	α_+^3	α_+^3	α_+^3	α_+^3	$\beta_+^2 = \beta^2$	$\beta_+^2 = \beta^2$	β^1_+ β^1	β^1_+ β^1	γ ₊ γ	γ ₊ γ_	χ_{-}^{1} χ_{-}^{2} χ_{-}^{3} χ_{-}^{2}	$\chi_{+}^{1} \chi_{+}^{2}$ $\chi_{+}^{3} \chi_{+}^{4}$	α^1_+ α^1	α^1_+ α^1	α_{+}^{2}	α_{+}^{2}	β^3_+ β^3	β^3_+ β^3
β_{+}^{2}	β_+^2	β_{-}^{2}	β_+^2	β_{-}^{2}	β_{-}^{2}	β_+^2	β_{-}^{2}	β_+^2	α_+^3 α^3	α_+^3 α^3	γ ₊ γ ₋	γ ₊ γ ₋	β^{1}_{+} β^{1}_{-}	β^1_+ β^1	α_{+}^{1} α_{-}^{1}	α_{+}^{1} α_{-}^{1}	$\chi^2_+ \chi^4_+ \chi^4_+ \chi^3$	$\chi^1_+ \chi^3_+$ $\chi^2 \chi^4$	β^3_+ β^3	β^3_+ β^3	α_{+}^{2} α_{-}^{2}	α_{+}^{2} α_{-}^{2}
β <u>2</u>	β_{-}^{2}	β_+^2	β_{-}^{2}	β_+^2	β_+^2	β_{-}^{2}	β_+^2	β_{-}^{2}	α_{+}^{3} α_{-}^{3}	α^3_+ α^3	γ ₊ γ	γ ₊ γ	β^1_+ β^1	β^1_+ β^1	α^1_+ α^1	α^1_+ α^1	$\chi^1_+ \chi^3_+$ $\chi^2 \chi^4$	$\chi^2_+ \chi^4_+ \chi^4_+ \chi^3$	β^3_+ β^3	β^3_+ β^3	α_{+}^{2} α^{2}	α_{+}^{2} α^{2}
β_{+}^{1}	β^1_+	β^1_+	β^1	β^1	β^1	β_{-}^{1}	β^{1}_{+}	β^1_+	γ ₊ γ ₋	γ ₊ γ ₋	α_+^3 α^3	α_{+}^{3} α_{-}^{3}	$\beta_+^2 = \beta^2$	$\beta_+^2 = \beta^2$	α_{+}^{2}	α_{+}^{2}	β_+^3 β_+^3 β^3	β^3_+ β^3_+	$\chi^3_+ \chi^4_+$ $\chi^1 \chi^2$	$\chi^1_+ \chi^2_+$ $\chi^3 \chi^4$	α^1_+ α^1	α^1_+ α^1
β_{-}^{1}	β_{-}^{1}	β_{-}^{1}	β^1_+	β^1_+	β^1_+	β^1_+	β_{-}^{1}	β_{-}^{1}	γ_+ γ	γ ₊ γ ₋	α_{+}^{3} α_{-}^{3}	α_{+}^{3}	$\beta_+^2 = \beta^2$	$\beta_+^2 = \beta^2$	α_{+}^{2}	α_{+}^{2}	β^3_+ β^3	β^3_+ β^3	χ_{+}^{-} χ_{+}^{2} χ_{+}^{3} χ_{+}^{4}	$\chi^{-}_{+} \chi^{-}_{+}$ $\chi^{1}_{+} \chi^{2}_{+}$	α^1_+ α^1	α^1_+ α^1
γ_+	γ_+	γ_{-}	γ_{-}	γ_+	γ_{-}	γ_+	γ_+	γ_{-}	β^1_+ β^1	β_{+}^{1} β_{-}^{1}	$\beta_+^2 = \beta^2$	β_{+}^{2} β_{-}^{2}	α_{+}^{3} α_{-}^{3}	α_{+}^{3} α_{-}^{3}	β^3_+ β^3	β^3_+ β^3	α_+^2 α^2	α_+^2 α^2	α_{+}^{1} α_{-}^{1}	α_{+}^{-} α_{-}^{1} α_{-}^{1}	$\chi^1_+ \chi^4_+$ $\chi^2 \chi^3$	$\chi^2_+ \chi^3_+ \chi^3_+ \chi^4 \chi^4$
γ_{-}	γ_{-}	γ_+	γ_+	γ_{-}	γ_+	γ_{-}	γ_{-}	γ_+	β^1_+ β^1	β^1_+ β^1	β_{+}^{2} β_{-}^{2}	β_{+}^{2} β_{-}^{2}	α^3_+ α^3	α_{+}^{3} α_{-}^{3}	β^3_+ β^3	β^3_+ β^3	α_{+}^{2} α_{-}^{2}	α_+^2 α^2	α^1_+ α^1	α^1_+ α^1	$\begin{array}{ccc} \chi^2_+ & \chi^3_+ \\ \chi^1 & \chi^4 \end{array}$	$\begin{array}{ccc} \chi^1_+ & \chi^4_+ \\ \chi^2 & \chi^3 \end{array}$

Numerical Results for a = c: Protected Criticality

Conclusions

MERA can support anomalous symmetry

- 1D critical theories at self dual points
- Gapless edge of 2D SPT phases

Full decomposition into topological sectors possible

- Full topological data can be extracted
- Scaling fields transform projectively
- Constrains correlation functions

Future Directions

- Looking at a non group examples such as Ising duality
- Translations?
- Tensor networks for anomalous boundary theories of 3D systems

Questions?

arXiv:1703.07782

Numerical Results for $a = b \leftrightarrow c = b$ Duality: Energy + SDs

