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Introduction

• Topologically ordered systems interesting for both
condensed matter and quantum computing
applications.

• Anyonic excitations associated to topological
phase. Created by string-like operators.

• Topological entanglement entropy identifies
topological order but does not identify which order
(which anyon model)[1].

• We aim to numerically find anyon creation
operators away from exactly solvable models.

2D Topologically Ordered Systems

• Long range ordered but no local order parameter.
Distinguished by extensive logical operators.

• Ground states can be used to encode quantum
information which is stable under local noise.

• Ground state degeneracy depends on topology of
lattice.

• Topological phases are robust to local
perturbations. Anyon braiding, fusion etc. should
be preserved[2].

• Ribbon operators provide a signal of a topological
phase, telling us more than just the total quantum
dimension.

What makes a good ribbon?

• Use the Toric Code as inspiration.
• Should preserve ground space

• [R,H ] = 0.
• Should define logical qubit (Z2 order) or similar
condition.
• {R,Z} = 0

• Bounded width but extensive length: string-like RG
fixed point.

• Should act as a unitary, at least on the ground
space. Logical operators map ground states to
ground states.

• Design a cost function quantifying these conditions.
Numerically optimise over some class of operators.

• How to generalise to the case of no known string?

Figure 1: When local perturbations are added to the Toric Code
Hamiltonian, we expect the string operators to blur out into ribbons
with support on a wider region.

Matrix Product Operators

• Efficient description of ‘low entanglement’
operators[3].

• Ribbons create particle pairs =⇒ low
entanglement.

• We search for ribbons within the class of
translationally invariant, low bond dimension
MPOs.
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Toric Code
• Exactly solvable model. Logical operators are known strings[4].
• Good for benchmarking numerical technique.
• Phase robust to λ∑

Z for large λ[5].
• Can we use the ribbon operators as an order parameter to detect the end of the topological
phase?
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Figure 2: ’Cost’ of a ribbon operator in the Toric code when we ask for RZ = eiφZR rather than anticommuting.
We see a strong dip at φ = π.
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Figure 3: Searching for a width 1 ribbon (string) operator for the Toric code. We need to consider the dual string
∏
Z

shown in red and the interior parts of the Hamiltonian terms which cross the boundary (sample star and plaquette
indicated).

Kitaev’s Honeycomb Model
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Figure 4: Kitaev’s Honeycomb model; qubits sit on the vertices of a honeycomb lattice. The Hamiltonian consists of
−Jx

∑
XX along all cyan links, −Jy

∑
Y Y along magenta links and −Jz

∑
ZZ along the black links (examples of

each shown). One ribbon operator (w = 1) consists of a product of Z as shown. The other is not known. We define
the unit cell of the ribbon as shown in blue, with MPO tensors numbered as indicated found using our algorithm for a
width 12 ribbon at Jx = Jy = Jz/10.

• Consists of qubits on a honeycomb lattice with three kinds of interactions[6].
• Has phase supporting Z2 (Toric code) order.
• Also has a (gapless) phase supporting nonabelian anyons.
• What do the ribbon operators look like in the Z2 phase?
• What happens at the phase transition?
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Figure 5: ’Cost’ of a ribbon operator in the Honeycomb model as the width is increased. The string operator
(w = 1) is far from ideal, but extending the support slightly leads to a drastic improvement.


