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Introduction

• We introduce a numerical method for identifying
topological order in two-dimensional spin models.
• Topological order away from integrable models.

• Topologically ordered systems interesting for both
condensed matter and quantum computing
applications.

• Topological entanglement entropy (sometimes)
identifies topological order but does not identify
which order (which anyon model)[1].
• Topological entanglement entropy sometimes mistakenly
identifys topological order[2]

• By studying 1D operators associated to
fundamental excitations (anyons), can efficiently
search for topological order.

2D Topologically Ordered Systems

• Long range ordered but no local order parameter.
• Ground space can be used to encode quantum
information which is stable under local noise.

• Ground state degeneracy depends on topology of
lattice.

• Low lying excitations (anyons) created by
string-like operators.

• Phases are robust to local perturbations. Anyon
braiding, fusion etc. should be preserved[3].

• Ribbon operators provide a signal of a topological
phase, telling us more than just the total quantum
dimension.

Properties of Anyons

• Created by string-like operator.
• Localised excitations

• Undetectable away from particle location.
• Free to move around without changing energy.

• String operators are deformable.
• Nontrivial braid statistics.
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• String operators are ‘slightly entangling’.
• Anyons have few degrees of freedom, strings act to
entangle them.

From Anyons to Ribbon Operators

• Operators supported on long strips with bounded
width.
• Proven in LCPC codes[4]

• Away from end points, the ribbon R should
commute with the Hamiltonian.

• Existence of a ribbon should only weakly depend on
the specific support chosen.

• Commutation of ribbons L and R should capture
the topological data (from the R or S matrix)
• We define the twisted commutator [R,L]η := RL− ηLR

• Restrict to the class of matrix product operators.
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Efficiently Optimising Ribbons

• Translationally invariant matrix product operators
are an efficiently representable and manipulable
subclass of operators.

• By vectorising the MPO tensors, we can apply
standard DMRG to optimise the ribbons.

• Cost function can be encoded as an MPO.
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Analytic Results?

• Method presented here is heuristic.
• Analytic link between approximate symmetries (i.e.
operators with small

∥∥∥[U,H ]
∥∥∥) and ground state

degeneracy discussed in poster of Chubb and
Flammia.

• Can an analytic extension of this work be used to
prove topological order without recourse to ground
states?
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Quantum Double Models
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The prototypical ribbon operators are the familiar string
operators in the ZN quantum double models[5]. These
commute with the Hamiltonian but have a twisted
commutator with η an N th root of unity.

• Exactly solvable when h = 0
• Good for benchmarking numerical methods.

• Topological phase.
• Robust to local perturbations [6]

0 π/2 π 3π/2 2π
16

10
8
6
4
2
0

φ

−
lo

g 1
0
C

(R
;e

iφ
)

TO: {J, h} = {1, 0}
TO: {J, h} = {1, .05}
TT: {J, h} = {0, 1}
TT: {J, h} = {1, 1}

Cost for pair of ribbons in the Z2 quantum double model with a
Z field. A signal of topological order (TO) is seen in the
appropriate phase, no such signal is present in the paramagnetic
phase. Similar behaviour is observed in the presence of an
Ising-like interaction. (Here η = exp(iφ))

Cost of a numerically obtained ribbon operator in the Z7
topological phase. The presence of Z7 anyons is
indicated by the strong signal whenever η is a 7th root
of unity.

Kitaev’s Honeycomb

• Spin model on a honeycomb lattice[7]
• Supports a phase with the same TO as the Z2
quantum double model
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As the width of the support is increased, we see the cost
decrease.

H = −JX
∑

i,j∈X links
XiXj − JY

∑
i,j∈Y links

YiYj − JZ
∑

i,j∈Z links
ZiZj
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When increasing the bond dimension, we see the cost
quickly saturate. This indicates that we are correct in
our assumption that the ribbon operators will be ‘slightly
entangling’

• Perturbatively (around small JZ) equivalent to the Z2
quantum double model[7]
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When the strength of the Z term is increased, the model
moves towards a phase transition. We observe the
strength of the signal decreases, although does not
disappear.


