Centre for Engineered Quantum Systems, The University of Sydney, Sydney, Australia
Introduction

- Tensor networks are used to describe the properties
of quantum systems with local Hamiltonians.
- One such network, the multiscale entanglement
renormalization ansatz (MERA)[1], provides a
powerful method for simulating quantum systems
at a critical point.
- This work investigates spin models which are
thought to correspond to $c=1$ conformal field
theories in the thermodynamic limit.

Scale Invariant MERA

- Critical systems are scale invariant, so a scale invariant ansatz is used.
- All layers of tensors are identical (after the first few).
- Green tensors perform Renormalization Group type transformation.
- Blue tensors are unitary disentanglers.
- Each layer represents the system on a different length scale.

Figure 1: The scale invariant ternary MERA is an ansatz for the wavefunction of critical quantum spin chains.

Figure 2: Two coupled Ising chains forming the Ashkin-Teller spin chain. One site is indicated. The model remains critical for a range of λ.

- Two Ising chains coupled by a 4 spin term with strength λ. Described by the Hamiltonian

$$
\begin{align*}
& H_{A T}=-\sum_{j=1}^{N} Z_{j}+Z_{j}+\lambda Z_{j} Z_{j} \tag{1}\\
& \quad-\sum_{j=1}^{N-1}\left(X_{j} X_{j+1}+X_{j} X_{j+1}+\lambda X_{j} X_{j} X_{j+1} X_{j+1}\right) .
\end{align*}
$$

Remains critical for $\lambda \in[-\sqrt{2} / 2,1][2]$.
$\mathbb{Z}_{2} \otimes \mathbb{Z}_{2}$ on-site symmetry can be enforced in the MERA.

- Believed to be described by the orbifold boson CFT[3], with radius

$$
\begin{equation*}
R_{A T}^{2}=\frac{\pi}{2 \cos ^{-1}(-\lambda)} . \tag{2}
\end{equation*}
$$

The Perturbed Cluster State Model

- Cluster Hamiltonian with $\mathbb{Z}_{2} \otimes \mathbb{Z}_{2}$ symmetry respecting perturbations

$$
\begin{align*}
& H_{p C L}=-\sum_{j=1}^{N} X_{j}+X_{j}+\lambda X_{j} X_{j} \\
& \quad-\sum_{j=1}^{N-1}\left(Z_{j} X_{j} Z_{j+1}+Z_{j} X_{j+1} Z_{j+1}+\lambda Z_{j} Y_{j} Y Y_{j+1} Z_{j+1}\right) . \tag{3}
\end{align*}
$$

Believed to be described by the free boson CFT, with radius

$$
R_{p C L}^{2}=\frac{2}{\pi}\left(\pi-\cos ^{-1}(\lambda)\right)
$$

$c=1$ CFTs

The known $c=1 \mathrm{CFT}$ mostly belong to two groups, the compactified free boson (S^{1} boson) and orbifold boson.
CFTs are specified by their central charge c, primary fields ϕ, their dimensions Δ_{ϕ} and spin s_{ϕ}, and the OPE coefficients.
Exactly marginal primary field leads to continuous variation of the scaling dimensions[5]

Figure 3: The S^{1} boson CFT is the theory of a massless bosonic field φ on a circle.
Conclusions

- We demonstrate the first application of MERA to
models with critical lines.
- We show the ability to replicate the expected
variation in the conformal data.

References

[1] G. Vidal, Phys. Rev. Lett., 99, 220405 (2007)
[2] M. Yamanaka et al., Phys. Rev. B, 50, 559 (1994).
[3] P. Ginsparg, Fields, Strings and Critical Phenomena (Les Houches, Session XLIX) (1988), arXiv:hep-th/9108028.
[4] F.C. Alcaraz et al., Ann. Phys, 182, 280 (1988).
[5] P. Di Francesco et al., Conformal Field Theory, Springer-Verlag, New York, (1997).

Physical Data Obtained from the MERA

