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Abstract

The simulation of quantum systems on classical computers is typically hard. We have developed an

algorithm to efficiently optimise the multiscale entanglement renormalisation ansatz to represent the ground

state of a large class of critical quantum spin chains. By incorporating Abelian symmetries, we achieve a

multiplicative reduction in the computational resources required to implement the algorithm. Further, we

have incorporated an approximation into the algorithm, allowing for an improvement in the scaling of the

algorithm with χ, the parameter controlling the accuracy of the approximation to the ground state. We have

demonstrated the reduced computational requirements of these modified algorithms.

Using the MERA, we examine a pair of models with complex phase diagrams; the Ashkin-Teller and

perturbed cluster spin chains. We show how data corresponding to a quantum field theory can be extracted

from simulating these lattices, and demonstrate the ability to recover the behaviour of the model as the scale

invariant ground state is varied.
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Chapter 1

Introduction
The study of interacting quantum systems lies at the heart of much of modern science, including condensed
matter, atomic and particle physics, computational chemistry and quantitative biology. A wide variety of
techniques have been developed to analyse these many body systems. Weakly interacting systems can be
attacked using perturbative techniques, but some of the most interesting systems are those which are strongly
interacting. In particular, many condensed matter systems contain very strong interactions, and very few
methods exist which can be applied to general models. In the field of quantum computation there has been
much interest in highly entangled ground states, which can be used for quantum computation requiring only
measurement [10].

Recently, a new class of methods has been described which allow much more general investigation of
strongly interacting quantum systems. Known as tensor network algorithms, these use a complex network of
tensors to efficiently approximate the true ground state of interacting systems, and allow the determination of
correlations, expectation values and energies. In this thesis, we will describe a particularly powerful tensor
network know as the multiscale entanglement renormalisation ansatz (MERA). This was first proposed in
2007 by Guifre Vidal [1], with an optimisation algorithm following in 2009 [2]. This network allows for
the analysis of the most entangled many body systems in one dimension, the critical models. These models
are characterised by their infinite correlation length, and are among the most resistant models to numerical
simulation.

In this thesis, we apply the MERA to a new class of models, which have been little studied using these
methods. In particular, we wish to analyse the quantum Ashkin-Teller model, an antiferromagnetic spin
chain which has been under investigation for over 30 years, and the perturbed cluster Hamiltonian, related to
a resource state for quantum computation. We develop modifications to the basic MERA algorithm, making
it more computationally efficient. The MERA is then used to investigate the properties of a class of models
far more complex than those previously investigated.

In chapter one, some formalism and physical concepts required for this thesis are reviewed. In particular,
we describe the type of models we will analyse, the one dimensional critical lattice models. We also discuss
conformal field theories; quantum field theories which describe the thermodynamic properties of these lattice
models, and who’s properties constitute the bulk of the physical information which we will extract from the
MERA.

In chapter two, we will review an algorithm which can be used to numerically optimise the MERA to
accurately approximate the ground states of this highly entangled systems. By implementing this algorithm,
we can simulate the lattice model and furthermore, we can extract information pertaining to the conformal
field theory describing the thermodynamic limit of the spin chain. We explain how this data can be extracted.

From chapter three onwards, we present original work. We begin by introducing our modifications,
which both improve the description and reduce the resources required for the algorithm. By reducing the
time required by the algorithm, we are able to obtain results which go beyond the literature.

In chapter four, we will describe two models, the Ashkin-Teller and perturbed cluster spin chains, which
are of particular interest for numerical investigation. We identify field theories associated with these models,
in addition to showing a way to calculate their ground state energies.

In chapter five, we will use the algorithm to examine the properties of the Ashkin-Teller and perturbed
cluster quantum lattices at their phase transition. These results are important as they demonstrate the power
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of the MERA to describe the ground states of a more complex class of models than have previously been

examined. They also provide independent verification of the power and demonstrate the limitations of the

numerical MERA. We will analyse these results, and describe how they allow us to link a particular field

theory to the lattice models being considered.

The final chapter will discuss the results obtained from the MERA code, and the impact of the modifica-

tions. We conclude by discussing some possible future work.

1.1 Terminology and Formalism

Here, we present a brief overview of terminology which will be necessary for this thesis. For a more expan-

sive look at the field of quantum information, please see [11].

A pure state of a quantum system is described by a ket vector |ψ? in a Hilbert space H, a vector space

of dimension d over the complex numbers. If the precise state of a system is unknown, a density matrix

description can be used. If there is a probability pj that the state is |ψj?, then the density matrix is defined as

ρ =
?

j
pj |ψj? ?ψj |.

The density matrix has Tr ρ = 1 (where Tr denotes the trace), which is a statement that the probability

that the system is in some state is one. The square of the density matrix does not necessarily have trace 1.

Those which do not are known as mixed states. These can be simply thought of as statistical distributions

over pure states. There is no basis in which this class of states may be expressed as a single ket, so no change

of basis renders them pure. If a pure state is defined on a combined system |ψ? ∈ H1⊗H2, where⊗ denotes

the tensor product, then the reduced state on either of the component subsystems is not necessarily pure. The

reduced density matrix on subsystem 1 is ρ1 = Tr2(|ψ? ?ψ|), where Trj(·) is the partial trace over system

j. This is clearly exemplified using a Bell state |ψ? = 1√
2
(|0? |1? + |1? |0?). The reduced density matrix on

system 1 is then

ρ1 = Tr2

?
(|0? |1?+ |1? |0?)(?0| ?1|+ ?1| ?0|)

2

?

=
|0? ?0|+ |1? ?1|

2
. (1.1)

This is a mixed state, since Tr(ρ2
1
) = 1/2.

If the subsystems 1 and 2 are entangled, then the reduced state on either system will be mixed. By an

entangled state, we mean a state which cannot be written as a product of pure states in the two Hilbert spaces.

That is a state which cannot be written as

|ψ? = |ψ1? ⊗ |ψ2? such that |ψ1? ∈ H1, |ψ2? ∈ H2. (1.2)

States which can be written in the form of eqn. 1.2 are known as product states.

The Pauli matrices will be used throughout. These are a basis for operators on spin-1/2 systems, and are

defined by

I = |0? ?0|+ |1? ?1| , X = |0? ?1|+ |1? ?0| ,

Y = −i |0? ?1|+ i |1? ?0| , Z = |0? ?0| − |1? ?1| , (1.3)

where |0? and |1? are orthogonal basis states often associated with spin up (|↑?) and spin down (|↓?).

1.2 Lattice Models

When considering many body systems, the standard example is the ideal gas. This is easy to analyse, and

perturbative corrections allow for a more realistic model to be constructed. Far more interesting are the

strongly interacting systems. These model a wide range of physical systems, in particular various phenomena

in condensed matter physics. An important class of strongly interacting quantum many body systems are the

spin lattice models. These are quantum spins of dimension d placed on some D dimensional lattice [12,13].

These systems are commonly described by a Hamiltonian with coupling between nearest and next nearest

neighbour sites on the lattice. As such, these are local models; the operators in the Hamiltonian only act

locally on a small number of spins. The range of physical systems which can be modelled using spin lattices

is vast, from quantum magnets to high temperature superconductors and gases of free particles [14–16].

2



Figure 1.2.1 : We can think of the Ashkin-Teller model as being defined on a pair of parallel chains. The σ

operators act only on the red chain and the τ act only on the blue. The lines represent coupling present in

the Hamiltonian. The green region indicates a single site.

1.2.1 The Ising model

The canonical example of a quantum lattice is the spin-1/2 (d = 2) transverse field Ising model on a D = 1

chain (fig. 1.3.1 (a)), described by the Hamiltonian

HIsing = J

N−1?

j=1

XjXj+1 + h

N?

j=1

Zj (1.4)

where X and Z are the Pauli operators, and j denotes the site number on the N site chain. This model

can describe a ferro or antiferromagnet depending on the sign of the coupling parameter J . h controls

the strength of a transverse magnetic field [17]. This model then has two competing interactions. The

ferromagnetic (antiferromagnetic) coupling term causes the spins to align (antialign) with their neighbours

along the X axis. The field causes the spins to tend to align along the Z axis. When the strength of the

two terms becomes equal (|h| = |J |), the system experiences a quantum phase transition [18]. This is a

zero temperature phase transition, but has observable effects at nonzero temperatures [19]. At this critical

point, correlations change from decaying exponentially with distance to obeying a power law. This increased

correlation range makes these systems particularly resistant to numerical analysis. The Ising model can

be exactly solved using a Jordan-Wigner transform [19], making it the workhorse model for benchmarking

numerical algorithms designed to approximate the solution to quantum many body systems.

One of the most interesting, novel and unintuitive features of quantum systems is entanglement (defined

above). Many lattice models have highly entangled ground states, including the antiferromagnetic Ising

chain. The entanglement in some of these systems can be used as a resource for measurement based quantum

computation (MBQC).

1.2.2 The Ashkin-Teller model

The Ising model is a very simple model. It has an immensely simple phase diagram, possessing only critical

points. To describe real systems, we need to be able to construct and understand more complex models.

In this section we describe another spin chain; the Ashkin-Teller model. The investigation of this lattice

using the MERA algorithm described in chapters 2 and 3 is one of the key aims of this project, as it has a

complex phase structure allowing for critical lines. These are lines in the phase diagram along which the

model remains at a phase transition.

If we take a pair of Ising chains and couple them with a four spin interaction, we obtain the Ashkin-Teller

(AT) model. This spin chain has spawned much interest since it was first defined in both its classical [20]

and quantum [21] forms. There is a vast quantity of theoretical literature on the subject of its complex

phase structure [22–26], and it has also been used to describe physical systems, including thin films [27],

superconductors [28] and anyonic systems [29].

The Hamiltonian for this system is

HAT = −

N?

j=1

σ
Z
j + τ

Z
j + λσ

Z
j τ

Z
j + β

?
σ
X
j σ

X
j+1 + τ

X
j τ

X
j+1 + λσ

X
j τ

X
j σ

X
j+1τ

X
j+1

?
(1.5)
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a) D = 1 spin chain b) D = 2 lattice

B
B

Figure 1.3.1 : Examples of lattices. The entanglement entropy of gapped local model obeys an area law. In

1D this is constant, and in 2D is proportional to the perimeter of the block B (blue region). Critical models

in 1D have a logarithmic correction to this area law.

where
?
σX , σY , σZ

?
,
?
τX , τY , τZ

?
are two sets of mutually commuting Pauli operators, that is they obey

the usual Pauli relations within a set and

[σ
X,Y,Z

j
, τ

X,Y,Z

k
] = 0, (1.6)

for all j, k. We think of these as acting on two different chains, as in fig. 1.2.1. Each site j contains a pair of

spin 1/2 particles, one red and one blue.

1.3 Entanglement Entropy

The entanglement in the ground state of a many body system can be quantified using the block entanglement

entropy. This is defined using the Von Neumann entropy, and measures the entanglement between a block B

and the rest of the chain. The entanglement entropy is defined as

S(ρB) = −Tr(ρB log ρB), (1.7)

where ρB is the reduced density matrix on a block, obtained by tracing out the rest of the system [30]. For

gapped systems, this can be shown to obey an area law [31]. The entanglement entropy between a block

and the rest of the lattice is proportional to the area of the boundary of the block. In 1D, the entanglement

entropy is bounded by some constant since the area is always the same, then

Sgapped ≤
c

3
log2(ξ/a) + k, (1.8)

where c is the central charge from the associated conformal field theory, which we explain in section 1.4. ξ

is the correlation length, a is the lattice spacing and k is a universal constant. In 2D, the area is proportional

to L, the side length of the block so S ≤ αL, for some constant α as shown in fig. 1.3.1.

The area law is violated for critical systems due to the diverging correlation length. In this case, the area

law has a logarithmic correction, so in 1D, the entropy scales as

Scritical ≤
c

3
log2(L/a) + k, (1.9)

where L is the length of B [31, 32].
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Figure 1.4.1 : The action of the special conformal transformation on a square grid.

1.4 Conformal Field Theories

The continuum limit of a lattice is described by a field theory. For example, a lattice of quantum harmonic

oscillators becomes a QFT of noninteracting bosons as the lattice spacing goes to zero. Since a critical

lattice model is scale invariant, the thermodynamic limit is described by a scale invariant field theory, known

as a conformal field theory (CFT) [33]. The Ashkin-Teller model is thought to be described by a particular

bosonic CFT. Investigating this field theory, via its correspondence to the lattice model will form a key part

of this thesis. In particular, much of the physical data we extract from the MERA corresponds to the data

required to construct a CFT, so we briefly review these theories here.

CFTs are quantum field theories which are invariant under the action of the conformal group; the group

of transformations on the underlying spacetime which preserve angles [33–35]. This includes the Poincaré

transformations

x
?µ
= x

µ
+ a

µ (Translations)

x
?µ
= Λ

µ
νx

ν (Lorentz Transformations)

which describe the isometries of Minkowski spacetime, and the added transformations

x
?µ
= λx

µ (Scaling Transformations)

x
?µ
=

xµ − bµx2

1− 2bẋ+ b2x2
(Special Conformal Transformations)

The special conformal transformation (SCT) can be reinterpreted as an inversion (x?µ =
xµ

x2 ) followed by a

translation and another inversion. The action of this transformation on a square grid is shown in fig. 1.4.1. In

D = 2, the constraints of conformal invariance impose very strict limitations of the field content of the CFT.

The Hilbert space breaks into representations of the Virasoro algebra [33]. Here, we have an infinite set of

operators Ln, L̄n (n ∈ � ), which act in a similar way to bosonic creation and annihilation operators a†, a

from quantum field theory. The vacuum is defined such that

Ln |0? = 0 = L̄n |0? ∀n > −1. (1.10)

Each representation is then labelled by a primary field φ
h,h̄

[35], which has associated state

|h, h̄? = φh,h̄ |0? . (1.11)

These primaries are quasivacuum states, since they are annihilated byLn(L̄n) for n > 0. These are in analogy

to the usual vacuum state from quantum field theory. They are eigenstates of L0(L̄0) with eigenvalues h(h̄)

such that

(L0 + L̄0) |h, h̄? = (h+ h̄) |h, h̄? (1.12)

(L0 − L̄0) |h, h̄? = (h− h̄) |h, h̄? . (1.13)
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→ →

a) First the lattice is
divided into blocks

b) The spins are replaced with
a single effective spin

c) Finally the lattice is
rescaled

Figure 1.5.1 : Examples of lattices. The entanglement entropy of gapped local model obeys an area law. In

1D this is constant, and in 2D is proportional to the perimeter of the block B (blue region).

L0+L̄0 is the infinitesimal generator of scaling transformations, so we identify h+h̄ as the scaling dimension

[34]. The name ‘dimension’ arises from classical field theory, where these quantities can be calculated via

dimensional analysis. By interpreting the CFT as acting in (1+1) dimensions, that is one time and one space,

we can interpret the rescaling as evolution under the Hamiltonian L0 + L̄0. Acting with L−n(L̄−n) adds n

units of energy, creating a descendent of |h, h̄? with energy h+ h̄+n. The degeneracy of the states increases

exponentially as we increase n, since there are two ways to add a single unit (L−1, L̄−1), five ways to add

two units (L2
−1

, L̄2
−1

, L−1L̄−1, L−2, L̄−2) and so on. Since i(L0− L̄0) generates rotations, we call h− h̄ the

‘spin’ number s. Knowledge of ∆ and s allows for recovery of h and h̄. The commutation relations of Ln

are

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n

2
− 1)δn+m,0, (1.14)

defining the Virasoro algebra [36] (L̄n obeys the equivalent relation). The central charge c arises in the

quantum case only, and can be interpreted as the Casimir energy, arising from quantisation on the cylinder

[33].

The conformal field theory can be completely determined by knowledge of the primary fields φh,h̄, the

central charge and the operator product expansion (OPE) coefficients, which describe the result of bringing

two fields to the same location [35]. For c < 1, there exists a complete classification of the unitary CFTs

(CFTs for which probability is conserved). Here, the field content can be completely determined by imposing

that all the states have nonnegative inner-product, which also means h, h̄ ≥ 0 [37]. The CFTs corresponding

to the models described in this thesis, includeing the Ashkin-Teller model are c = 1 theories, and are more

complex in structure.

Later, we will show how the scaling dimensions ∆φ = h + h̄ and central charge, properties of a field

theory, can be extracted from the MERA simulations of the lattice models.

1.5 Renormalisation and the Renormalisation Group

At criticality, lattice models become scale invariant; there is no characteristic length scale since the corre-

lation length becomes infinite. One of the main tools used to investigate how physics changes on different

length scales is the Renormalisation Group (RG) techniques developed by Wilson [38]. The elementary RG

transformation on a lattice is easily understood for a classical magnet, and is summarised in fig. 1.5.1 (a)-(c).

At the microscopic scale, we have a lattice of classical spins [39]. The spins can be blocked together, and

replaced by an effective spin, using, for example, a majority vote or average spin. The system can then be

rescaled. This process has removed some of the degrees of freedom and replaced the lattice by some effective

lattice, described by a new Hamiltonian, with a new scale [40]. If the lattice is unchanged under this action,

then the model is scale invariant.
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The RG transformation generates flows in parameter space, with scale invariant systems corresponding

to the fixed points of the flows [41] since they are unchanged under renormalisation. Perturbations added to

the Hamiltonian may be relevant, marginal or irrelevant [41–43]. Relevant perturbations grow under rescal-

ing, so affect the macroscopic physics. Irrelevant perturbations flow back to the fixed point, so do not affect

the thermodynamic properties. Marginal terms neither flow towards or away from the fixed point, but remain

equally important at all scales. Critical systems correspond to unstable fixed points since they have relevant

operators. The different types of perturbation are easily identified in theD+1 dimensional CFT correspond-

ing to the D dimensional scale invariant lattice. Marginal operators are those with ∆ = h + h̄ = D + 1,

relevant operators are those with ∆ < D + 1, and operators with D + 1 < ∆ are irrelevant [42]. In this

thesis, we are interested in the thermodynamic properties of quantum spin chains, and so will only consider

relevant and marginal operators.

In this chapter, we have introduced some of the formalism and physical concepts required for this thesis.

In particular, we have introduced lattice models; the central focus of this research. We have also introduced

conformal field theories, which describes the thermodynamic limit of these spin chains, and who’s building

blocks we will extract from our numerical investigations.
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Chapter 2

Tensor Networks
Tensor networks are used to describe the properties of quantum systems which possess some notion of
locality. They are particularly useful for examining the ground state of many body systems, where they can
be used both as an analytical tool and a numerical ansatz, allowing exact solution and accurate approximation
[44].

In this chapter, we will describe tensor networks, with a particular focus on a network first proposed
in 2007 [1]. This is known as the multiscale entanglement renormalisation ansatz (MERA), a tool for in-
vestigating the macroscopic physics of critical quantum systems. We will review a general algorithm first
described in 2009 [2], used to optimise the network to efficiently represent the ground state of this class of
models. We will also provide the methods used to extract conformal data from a well converged MERA.
These ideas for the basis for our new algorithm, and the code to implement it.

We begin by describing a standard notation used to describe and manipulate tensor networks [13, 45].

2.1 Introduction to tensor network formalism

A wide variety of tensor networks have been proposed, including matrix product states (MPS) [46] and
its generalisation, projected entangled pair states (PEPS) [47]; tensor tree networks (TTN) [48]; and the
multiscale entanglement renormalisation ansatz (MERA) [1] to name just a few. These are all based on
decompositions of an n index tensor, with the choice of dummy indices defining the different networks. Due
to the complexity of the decomposition, a graphical notation is usually used, allowing the connectivity of the
network to become transparent.

The wavefunction of the ground state of an n site system of d dimensional spins is written in the product
basis as

|ψ? =
d?

i1=1

· · ·
d?

in=1

ci1···in |i1? ⊗ · · · ⊗ |in? . (2.1)

The tensor ci1···in then contains all the information about the system. This tensor is can be written in a
graphical notation as

c

i1 i2 i3 in−1 in
· · ·

, (2.2)

with a leg for each index.
We can use this notation to make transparent a range of tensorial operations, such as matrix multiplica-

tion. A matrix is a two index tensor, and the product of two matrices can be written

Cd
a = Ab

aB
d
b ⇔ A B

a

b

b

d

=
A

B
= C . (2.3)
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Here, the b index is common, so is summed over. In the graphical form, any index connected to a pair of

tensors is implicitly summed over, as in the Einstein convention.

We can use this notation to perform more complex operations, such as the tensor product

A
b
aB

d
c = C

bd
ac = A B = C , (2.4)

the partial trace

C
db
ab = C = , (2.5)

and singular value decomposition (SVD)

M = V SW
†
= = V S W †

, (2.6)

where V and W are unitary, and S is positive and diagonal. This is a particularly useful decomposition,

which is frequently used in the study of highly entangled systems [49, 50]. The entries of S are the singular

values. In contrast to the eigenvalue decomposition, the SVD can be applied to all matrices, both square and

rectangular.

In the framework used here, upper and lower indices can be exchanged freely, though Hermitian conju-

gation must be applied. This is clear in the case

|x? = x → ?x| =
x

. (2.7)

With this notation, we can decompose eqn. 2.2 in many different ways, leading to the idea of a tensor

network. One of the simplest decompositions is the matrix product state (MPS), obtained by sequential

singular value decompositions

c

i1 i2 i3 in−1 in
· · ·

=

i1 i2 in

· · ·V1 S1 V2 Sn−1 Vn

, (2.8)

where the vertical ‘free’ indices have the dimension of the physical spins d, and the internal ‘dummy’ indices

have dimension χ, known as the bond dimension.

2.2 Matrix Product States

An MPS is simply a different way of writing ci1···in (eqn. 2.2). In particular, if we contract all the internal

indices, we recover the full description of the system. The amount of information, and thus the size of ci1···in ,

required to describe the ground state of anN body quantum system is exponential inN , however most of the

values in the S tensors are vanishingly small when we restrict to physical states [51]. Thus, if we truncate the

dimension of the bonds (dummy indices) in such a way as to only discard small values, our description will

efficiently approximate the ground state. That is, it will provide a description which is at most polynomial in

N , but which retains the essential physics of the full description.

The amount of entanglement that can be represented in a tensor network is related to the bond dimension.

The sum of the dimensions of all the bonds which would have to be broken to detach a block from the rest

of the diagram is proportional to the total entanglement between the block and the rest of the network which

can be captured by the network. For an MPS, this is simply 2χ regardless of the block size. This is the same

relation as the entanglement entropy scaling in the ground state of a gapped one dimensional system [52]. It

can be shown that the ground state of every gapped spin chain can be approximated to a given accuracy with

bond dimension linear in N [51, 52]. The remaining problem is to find a suitable truncation.
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Figure 2.3.1 : The decomposition known as the MERA. This is a more highly connected diagram than the

MPS, meaning much more highly entangled states can be represented.

There is a small set of models for which an exact MPS description can be written down, however for

most systems we require a numerical algorithm to choose the correct tensors for an accurate approximation.

To be useful, this algorithm should be able to find the ground state in a computationally efficient way. In

other words, the resources (time and memory) should scale at most polynomially with the system size. One

of the most common algorithms for MPS optimisation is time evolving block decimation [53–55]. This

begins with a random MPS, and simulates evolution in imaginary time. This acts as time evolution of a

dissipative system [56], under which it should relax to its ground state, and thus the tensors tend towards a

good representation of the ground state (assuming a sufficiently large bond dimension has been chosen).

Although the class of models which can be efficiently approximated efficiently using an MPS description

is large, it excludes the most interacting states. In particular, quantum critical states cannot be represented due

to the divergence in the correlation length leading to a logarithmic violation of the area law. These systems

have no classical counterpart, and thus give us the most exciting and novel physics. Although modifications

to the MPS have recently been proposed, such as incorporating finite size scaling techniques to allow for

MPS investigation of these models [57, 58], a more natural decomposition exists which allows these models

to be analysed directly. This is known as the multiscale entanglement renormalisation ansatz.

2.3 Multiscale Entanglement Renormalisation Ansatz

One of the decompositions which are collectively known as the multiscale entanglement renormalisation

ansatz (MERA) [1] is shown is fig. 2.3.1. The particular form described here is the ternary or 3 : 1 scale and

translationally invariant MERA.

This diagram is much more highly connected than that of the MPS. Due to the layered structure, the

minimum number of bonds that must be broken to detach any block increases logarithmically with the block

size, exactly the logarithmic correction to the area law seen in critical spin chains. As such, the MERA is

expected to be able to efficiently represent this wider class of systems.

With so many tensors in the network, how do we design an algorithm to optimise for an accurate ground

state representation? We can enforce spatial symmetries present in the model of interest, restricting our

choice of tensors. Many spin chains are defined by a translationally invariant local Hamiltonian. It is rea-

sonable to expect that the ground state will reflect this invariance. In addition, critical systems are scale

invariant. The MERA has a clear layered structure, with each layer interpreted as describing the system

on a different length scale. As such, both the microscopic and macroscopic physics is captured by a well

converged MERA. Translational invariance can be imposed by making all tensors identical within a given

layer, and scale invariance by making all layers identical. As such, we reduce the problem to selecting a pair

of tensors, u (blue squares in the diagram) and w (green triangles).
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2.3.1 Enforcing Locality in the MERA

One of the most important assumptions in physics is that of locality. This is the axiom that events at x only

affect regions in the region directly around it. The couplings described in the Hamiltonian for the Ising model

(eqn. 1.4) are local, and we expect them to remain local upon renormalisation. In order to enforce this, we

will make an assumption regarding the form of the tensors, and show how this causes locality to be preserved

on all scales. Let the tensors u and w have the properties

w
†
w = I ≡

w†

w

= (2.9) uu
†
= u

†
u = I

⊗2
≡

u

u†

=

u†

u

= . (2.10)

If we then include a local operator acting on a pair of sites on layer L and calculate the expectation value

?ψ| Ô |ψ?, we can apply these contraction rules and see that it indeed remains local on layer L+ 1.

→ → , (2.11)

where the yellow rectangle is some local operator. This operator only affects a pair of sites on the coarse

grained layer, and has therefore remained local.

Removing the operator from the contracted network, we obtain an ascending superoperator,

AL(·) = , (2.12)

which takes a local operator on layer L to a local operator on layer L+1. We can then use this superoperator

to create an effective Hamiltonian on each layer, given some physical Hamiltonian on layer L = 0. The

reduced density matrix, describing the state of a pair of spins on layer L can be obtained from that on layer

L+ 1 using the operator dual to A, know as the descending superoperator, and drawn as

DL(·) = , (2.13)

where the tensor to be lowered is inserted in the middle.

2.3.2 Isometric Tensors and Renormalisation

The tensors u are required to be unitary by eqn. 2.10 [11]. This is simply the requirement that if states are

acted upon by u, properly normalised states are the result; probability is conserved. The condition on w is

somewhat weaker, only enforcing the isometric constraint w†w = I . w† is a map

w
†
: H

⊗3

in
→ Hout, (2.14)
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from the input space with three legs to the output space with just one. This corresponds to making an effective

spin from the three input spins. Clearly, if dout = d3
in
, all degrees of freedom can be retained. However, as

in the MPS above, we can choose to truncate the dimension dout ofHout, so that dout < d3
in
. This truncation

and rescaling is exactly the operation described in sec. 1.5 for the renormalisation group transformation. The

unitary operator can be interpreted as removing the entanglement at the edges of the blocks, preventing build-

up which causes the size of the Hilbert space to grow when RG is applied to entangled quantum systems [1].

In this way, the MERA is an entanglement renormalisation scheme, allowing renormalisation techniques to

be extended to a huge class of highly entangled states. The aim of any optimisation algorithm is then to

choose the tensors such that they best retain the low energy degrees of freedom, and truncate away only the

high energy subspace.

2.4 Optimisation Algorithm

Here, we will describe the basic algorithm used to update the tensors in the MERA following [2–5]. This

allows convergence towards a network which faithfully represents the ground state of a given Hamiltonian.

This algorithm can be carried out in a computationally efficient way as a result of the isometric constraint

on the tensors described above (eqns. 2.9 and 2.10). Any network which uses isometric tensors to enforce

locality in this way is an example of a MERA. Here, we consider the ternary MERA, which uses 3:1 tensors.

In particular, we will specialise to the case of a scale and translationally invariant model.

2.4.1 Updating Tensors

The optimisation proceeds using structures known as environment networks. These are fully contracted

networks containing the effective two site Hamiltonian (orange rectangle) on layer L and the reduced density

matrix on a pair of sites on layer L+ 1 (purple rectangle).

(2.15)

We can view this network as an ascending superoperator, giving hL+1, followed by Tr(ρL+1hL+1). It is

then clear that this computes the energy of the state on layer L + 1. We wish to minimise this energy,

however this network is quadratic in the tensors u and w, meaning that it contains both u and u†, w and w†.

No algorithm exists to optimise this network whilst also retaining the unitary constraint, so we optimise a

linearised network instead [2,4]. This is the network created by removing the tensor to be optimised from the

network, and temporarily assuming that u† is unrelated to u. The environment of u is computed by removing

u from the network, leaving

, (2.16)

which can be contracted to give a four index tensorEu. The energy is given by the contraction of this network

with u, so

E = Tr(Euu). (2.17)
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By assuming u and u† are independent tensors, we can use a result from linear algebra to minimise this trace.

We can decompose Eu using a singular value decomposition, to give

Eu = V SW
†
. (2.18)

Using a result from matrix analysis [59], we can minimise eqn. 2.17 by setting

u
?
= −WV

†
. (2.19)

Calculating the analogous environment for w, we can use the same process to update all tensors in the

network.

The superoperators described here correspond to one particular choice of location for h and ρ. In reality

there are three different locations, and we use the average superoperators

A(h) =
1

3
+
1

3
+
1

3
, (2.20)

and

D(ρ) =
1

3
+
1

3
+
1

3
. (2.21)

2.4.2 Optimisation of the Network

2.4.2.1 Noncritical Systems

Gapped models do not possess scale invariance, so each layer in the MERA must be distinct. With the

knowledge of how to optimise each tensor, we need an algorithm to update the entire network. In particular,

we initially only know the Hamiltonian on the zeroth (physical) layer h0, so cannot update the higher layers

without first ascending it. However, we cannot optimise the bottom layer without a reduced density matrix on

layer one. Thus, an alternating algorithm is used. Initially, a guess is made to the reduced density matrix on

the very top layer. This is then lowered through each layer using the appropriate descending operator (formed

from the tensors {uL, wL} from layer L. We now have the tensors required to update the lowest layer, so

this proceeds as above. Once this is done, h0 can be ascended, meaning the next layer can be updated also

(the full set of reduced density matrices was stored on the way down). This process proceeds until all layers

have been updated, and is then repeated until the MERA stops changing to within some tolerance.

2.4.2.2 Scale Invariant MERA

The scale invariant MERA has an infinite number of layers, otherwise there would be a length scale upon

which the state disappeared. Despite this, there are only a pair of tensors {u,w} to be updated, since all

layers should be identical. The density matrix used should be the same on all layers, and is know as the fixed

point density matrix, ρfp. By the construction of the MERA, D (eqn. 2.21) is a quantum channel. That is, it

preserves the trace of the density matrix and the eigenvalues obey |λn| ≤ 1 [60]. Then, the unique operator

fixed byD is ρfp. All other operators decay under many applications ofD. Thus, we do not have to calculate

the density matrix on each layer, rather, we simply need to find the fixed point of D. As described above,
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the purpose of the MERA is to provide a computationally tractable way of approximating the ground states

of quantum systems. As such, the algorithm is designed to be as efficient as possible. In appendix A, we

demonstrate how the optimal contraction scheme of a particular network depends on the particular structure.

By contraction scheme, we mean the order in which the contraction is carried out, i.e. which indices are

contracted first, second etc. This is explained in detail in appendix A. The contraction of D(ρ) scales as χ8,

whereas the construction of D(·) scales as χ10. In practice then, ρfp is found by applying D several (around

10 appears to work, although this can be decreased as the MERA converges) times rather than calculating

the eigenspectrum of D.

The Hamiltonian is not a fixed point ofA, rather the identity operator is [61]. This is clear by inserting the

identity tensor into A(·) above and applying the unitary constraints (this is also the reason for the presence

of the operator with eigenvalue 1 of D above). As such, we cannot find a fixed point Hamiltonian. Since the

network is linear in h, we can use the average Hamiltonian

h̄ =

∞?

L=0

1

3L
hL (2.22)

to capture the scale invariant nature of the network. The 1/3L factor is a consequence of the relative number

of tensors on subsequent layers. Clearly we cannot calculate this infinite sum efficiently, however due to the

rapid decay we only need to calculate the first few terms. We find that 10 is sufficient. Once the network is

well converged, we use

h̄ = h0 +
1

3
A(h̄), (2.23)

where h̄ is the average Hamiltonian from the previous iteration. Since the Hamiltonian should be the same

on all layers up to a numerical factor, this accurately approximates the infinite sum above. We then use

{ρfp, h̄} to update {u,w} by computing the environments as described above. Thus, the algorithm for the

scale invariant MERA has only two steps,

1. Using {u,w}, compute ρfp and h̄,

2. Using {ρfp, h̄}, update u and w.

These are repeated until the MERA is well converged.

2.4.2.3 Choosing χ

The above algorithm requires all the w tensors to be identical. In particular, the upper and lower indices have

the same dimension. Thus, all indices must carry the physical dimension of the spins. This corresponds to

a large truncation initially, and tends to lead to poor MERA representations of the desired state. We need

to use a slightly modified algorithm which allows freedom in the choice of χ. This can be achieved in two

different ways, both of which we will use.

Preblocking Preblocking is the process of initially relabelling what we call a ‘site’ in the Hamiltonian. A

pair of spins of dimension d are combined into a single site of dimension d2. As such, we can choose χ to

be a power of the physical dimension. This process is lossless; it does not involve any truncation. The new

Hamiltonian is calculated from the original by blocking pairs of sites into a single new site using

heff =
1

2
+ +

1

2
, (2.24)
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where the coefficients arise from the fact that the leftmost diagram is the rightmost diagram in the site shifted

one to the left. The dimension of the upper index is d2, and these are identity tensors.

Preblocking can be extremely useful for models with low physical dimension (such as the Ising model

with d = 2), allowing larger bond dimensions. It also allows for models which do not possess one spin

translational invariance, but rather a longer range invariance, to be blocked to ones that do.

Due to the d → d2 mapping, if preblocking is performed multiple times, the effective physical dimension,

and thus χ grows very rapidly, and quickly become intractable. To be able to choose χmore freely, we require

another method to allow more freedom.

Translationally Invariant Layers Relaxing the scale invariant condition allows us to include a few layers

with different tensors at the base of the MERA. These retain the translational invariance, so are named

translationally invariant layers (TILs) as opposed to the scale invariant layers above. These layers each

have a pair of tensors which must be optimised as above. Since they differ from the bulk, they can have

arbitrary dimension on the upper indices, allowing for any choice of χ. Some experimentation is required

to determine the correct number of TILs to include. Typically, one is used to select χ and the MERA is

optimised. After, the bottom scale invariant layer is allowed to vary, giving more variational parameters and

often an improvement in the output. Once this has converged, the new base scale invariant layer is allowed

to vary and the new MERA is converged. This can be repeated until no improvement is seen in adding more

TILs (usually after there are 2-3 TILs).

2.4.3 Computational Cost

The computational cost of the algorithm is an important consideration. To make the algorithm useful, it must

be efficient. This means that the time and memory costs for increasing χ should scale at most polynomially.

The cost of contracting a network is easily calculated for a particular contraction scheme. This involves

contracting pairs of tensors in some order, and looking for the most costly contraction. This process is

described in detail in appendix A. The time cost of a contraction is proportional to the total number of indices

(both free and dummy) connected to the two tensors involved, with contracted indices being counted only

once. Thus, eqn. 2.9 scales in time as χ5 whilst eqn. 2.10 scales as χ6. The memory cost is proportional to the

highest rank tensor formed using the contraction scheme. The scaling in time for the ternary MERA scheme

described here is χ8 if the optimal contraction scheme is chosen [2]. Generically, however, the selection

of the optimal scheme is #P-complete, and thus is intractable for a classical computer for sufficiently large

networks.

2.5 Conformal Data from the MERA

Once the MERA is well converged, we wish to extract some physical information about the spin model. The

thermodynamic limit of the model at its quantum phase transition is completely described by its associated

conformal field theory. Here, we describe how the data necessary to construct the CFT can be extracted from

the scale invariant MERA.

The isometric tensor in the MERA performs a rescaling transformation. As described above (section

1.4), L0 + L̄0 is the generator of scaling transformations, with eigenvalues ∆φ which are known as the

scaling dimensions. By finding the eigenoperators of the one site scaling superoperator

S(·) = , (2.25)

we can find the scaling operators and their dimensions. Since S corresponds to a finite transformation, it is

related to exp(L0 + L̄0) (recall that L0 + L̄0 is the infinitesimal generator of scaling transformations). The

eigenvalues λ of S are then related to the scaling dimensions via∆φ = log3(λ). The base 3 logarithm occurs

since the isometries are 3 : 1 tensors.
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The central charge of the theory can be extracted from ρfp using the corrected area law (eqn. 1.9), re-

peated here

Scritical =
c

3
log2(L/a) + k, (2.26)

where c is the central charge of the CFT, L is the block length, a is the lattice scaling (here, a = 1 by

definition) and k is some constant. Then by calculating the entropy for one and two site blocks, we can

calculate c by

c

3
=

c

3
log2(2) + k − (

c

3
log2(1) + k). (2.27)

The one site density matrix is calculated by symmetrising over the two ways of tracing out a subsystem from

ρfp. With the scaling operators and their dimensions, as well as the central charge and the OPE coefficients,

the CFT describing the thermodynamic limit of the lattice model can be completely classified. Thus, we can

use the MERA to extract most of the conformal data, giving a complete classification of the CFT.

In this chapter, we have reviewed a basic algorithm which can be used to optimise the scale invariant MERA

to approximate the ground state of a critical spin chain. We have also explained how physical information

can be extracted from a well converged MERA, providing data to construct a CFT describing the contin-

uum limit of the lattice. This algorithm can be modified by incorporating further physical knowledge about

the particular models of interest, such as internal symmetries (e.g. invariance under spin flips) of the lattice

Hamiltonian. The next chapter will describe how these constraints can be included to achieve a more accurate

description of the ground state of interest. We will also describe some physically motivated approximations

that can be added to improve the scaling of the algorithm with χ, the parameter which sets the accuracy of

the tensor network description.
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Chapter 3

Modifications to the MERA Algorithm
In the previous chapter, we described how the MERA can be optimised to describe the ground state of a

quantum lattice models described by local Hamiltonians. We imposed the constraints of scale and transla-

tional invariance, and locality preservation. This allowed design of an algorithm which required optimisation

of only a pair of tensors u and w. The optimisation was achievable in time that scaled as χ8, where χ was

the bond dimension of the MERA, the parameter which sets the accuracy of the converged network.

In this chapter, we will describe some novel modifications made to our MERA code. These both increase

the efficiency of the algorithm, and impose physical constraints which are known to be present in the ground

states of interest. Our alterations allow for both a decrease in the computation time by a multiplicative factor,

and an improvement in the scaling of the algorithm.

We begin by describing how tensors may be selected to improve convergence times, and how we can

make use of decay of correlations to improve the scaling of the algorithm. In the second half of this chapter,

we describe how symmetries which are present in the Hamiltonians for the models of interest may be incor-

porated into the MERA. This has the effect of decreasing computational cost, and ensures that the ground

states have the relevant symmetries.

3.1 Preprocessing

In the algorithm described above, the tensors are initially chosen randomly. The convergence of the MERA

can be hastened, and the potential for erroneously finding local minima decreased by preconverging the

tensors [62].

When constructing a MERA, we want to choose the u’s and w’s that retain only the low energy subspace.

We aim to select which minimise Tr(M†HM), where M = , since if this is

minimised, the high energy subspace will be truncated preferentially.

It is clear that M† : �
⊗N → �

⊗N/3, since the renormalising tensors map three spins onto a single

effective spin at the next length scale.

Recall that we imposed an isometric constraint on the tensors, so M†M = �N/3, which allows the

minimisation problem to become

min
u,w

Tr(M
†
HM) = min

u,w
Tr(M

†
HMM

†
M) = min

u,w
Tr(MM

†
HMM

†
). (3.1)

In this form, we can identify MM† as a projector

MM
†
= P : �

⊗N
→ �

⊗N/3
→ �

⊗N
. (3.2)

So, minimising over u and w allows projection onto the low energy subspace of the Hamiltonian. Tem-

porarily neglecting the upper layers of the MERA for numerical convenience, we can use this to design an

algorithm to preprocess the tensors. By using several layers, we can form the projector by connecting the

upper free legs as fig. 3.1.1. Alowing us to update the layers in pairs, so each is minimised in the presence of

the others. The tensors are optimised in the standard way. This is repeated until a certain level of convergence

is realised, then the main MERA algorithm is used, with these tensors as a start point.
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Figure 3.1.1 : The diagram used to preprocess the tensors to give an initialisation state which lives in the

low energy subspace of the Hamiltonian. Here, the inner layer is coloured differently to indicate it is a TIL,

included to allow choice of χ. The orange rectangle indicates the Hamiltonian.

By preprocessing the first two layers in this way, we can achieve part of the convergence without the

need to calculate objects such as the fixed point density matrix and average Hamiltonian, both of which are

computationally expensive.

3.2 Reducing Computational Cost

The algorithm described above requires contraction of the ascending and descending superoperators, as well

as the environments of u and w. It can be shown (appendix A) that the time for this scales as χ8. This

rapidly becomes computationally intractable, so further approximations are necessary. Two are described in

this thesis.

3.2.1 χL and χU

The disentangler u described above obeys a unitarity constraint. If we relax this, and allow the upper and

lower indices to differ in dimension, so we now have two bond dimensions χL and χU for the lower and

upper indices. The role of the two tensors becomes somewhat blurred. We retain an isometric constraint

on u, so the disentanglers now have a blocking/truncation role similar to the w tensors. This allows for the

optimisation to scale as χ4
U
χ4
L
. Restricting χU < χL does not seem to greatly decrease the accuracy of

the converged MERA (as long as the restriction is not too great), but does allow for much faster runtime.

The tensor u now performs a double role, both reducing the entanglement across the boundary of a block as

before, and discarding the high energy subspace.

3.2.2 Including a projector

The reduced density matrix ρfp describes two sites, so is a χ2 × χ2 matrix (when its upper (lower) indices

are fused together). As such, it has χ2 eigenvalues, describing the probability of measuring any of the basis

states. Although this spectrum may take any form, for physical states the eigenvalues tend to decay rapidly,

meaning that the probability of measuring the system in the majority of the basis states is negligible.

In the MERA, this can easily be verified by looking at the spectrum of ρfp. Since these vanishingly small

values have a negligible effect on the final state, they may be safely neglected through the inclusion of a

projector P [4]. This is be chosen such that ρ ≈ P (ρ), projecting into the space formed only from the most
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significant basis states. P is made of a pair of isometric tensors v, and is written

P = , (3.3)

where the middle index has dimension χ̄. The tensors are optimised as above, to project onto the most

significant eigenspace of ρfp. The error involved in introducing the projector is easily measured as ? =

1−Tr(Pρ), and can thus be controlled. Including the projector modifies the various networks, for example,

AL(h) becomes

P = . (3.4)

This network can be contracted in a time proportional to χ6χ̄, where χ̄ is the dimension of the dummy index

in P . The MERA converges well with χ̄ chosen to beO(χ) rather thanO(χ2), thus allowing the optimisation

algorithm to be computed in time proportional to χ7 rather than χ8. Here, it seems that χ̄ = 5χL allows for

an accurate algorithm.

3.3 Symmetric MERA

In this section, we will describe how symmetries of the Hamiltonian describing some lattice model can be

incorporated into the MERA. This both enforces physical information about the ground state under consid-

eration, and allows for reduction in the required resources. We begin by describing the basic formalism used

to describe a subclass of symmetries, using the Ising model as a concrete example.

3.3.1 Symmetries in Quantum Spin Chains

The critical Ising model is described by the Hamiltonian

HIsing =

N?

j=1

hj,j+1 = −

N?

j=1

(XjXj+1 + Zj) . (3.5)

This commutes with the symmetry operator

S =

N?

j=1

Zj , (3.6)

so the model is said to possess a �2 symmetry, since S generates a 2N dimensional representation of the

group �2. The group �2 has two elements e and x such that e2 = x2 = e and ex = xe = x, exactly the

multiplicative properties of S. This is an Abelian group, meaning all elements commute. The discussion here

will concern only Abelian groups, although it can be generalised [6,63,64]. In particular, we are interested in

on-site symmetries. These are symmetries which can be written as eqn. 3.6; the tensor product of operators

on each site, where the set of on-site operators form a matrix representation of the group. Of course, we can

use a procedure similar to the preblocking described in eqn. F.1 to redefine what we mean by a site if the

‘on-site’ operators act on a pair of spins for example.

If we consider a basis for the Hilbert space on a single site, we see that it is spanned by a pair of orthogonal

states, |↑? and |↓?. Then, Z |↑? = + |↑? and Z |↓? = − |↓?. If we then write the matrix Z in the |↑? / |↓?

basis (as we usually do), we see it is block diagonal. The representation is decomposed into the direct sum
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of the two irreducible representations (irreps) of �2. It is a generic feature of symmetric models that the

Hilbert space will decompose in this way into sectors which transform according to the different irreps of

the symmetry group. For finite Abelian groups, the irreps are all one dimensional, and so are exactly given

by the character table [65]. For �2, the table is

e x

χ1 1 1

χ2 1 −1

Table 3.3.1 : The character table for �2. Here, e and x label the group elements and χ1,χ2 label the two

irreps.

Given a state which transforms according to some irrep, we can assign it a conserved charge labelling

its irrep. Thus for the Ising model, we can assign the |↑? state a charge ‘+’ and the |↓? state a charge ‘−’.

If we now take the combined Hilbert space H1 ⊗ H2 on a pair of spins, we can then use the product basis

{|↑↑? , |↑↓? , |↓↑? , |↓↓?}. Clearly, the symmetry operator restricted to the pair is Z1Z2. Looking at how the

product states transform, we see that now

Z1Z2 |↑↑? = + |↑↑? Z1Z2 |↓↓? = + |↓↓? (3.7)

Z1Z2 |↑↓? = − |↑↓? Z1Z2 |↓↑? = − |↓↑? . (3.8)

This gives us rules for combining the charges, known as fusion rules. The fusion rules for �2 are ± × ± =

+, ± × ∓ = −. Choosing a different basis, the symmetry adapted basis, we see from eqn. 3.5 that the

Hamiltonian on a pair of spins i and i+ 1 is

hi,i+1 =

|↑↑? |↓↓? |↑↓? |↓↑?










?↑↑| −1 −1
0

?↓↓| −1 1

?↑↓|
0

−1 −1

?↓↑| −1 1

, (3.9)

where the red entries are in the plus sector and the blue entries in the minus sector. There is no coupling

between states with different charges, and so the charge is conserved. To enforce the symmetry in the MERA,

we simply have to ensure this conservation law is obeyed.

3.3.2 Symmetric tensor networks

Here, we will describe how the conservation law for the charges described above can be incorporated into

the MERA network. Symmetries have been previously incorporated into tensor networks in general and

the MERA in particular [6–8], however the particular implementation used here is original. It is based on

discussions with Guifre Vidal, and a comment in [5]. We will show how this leads to a decrease in required

resources.

3.3.3 Symmetric Tensors

The basic unit for the symmetric MERA is the symmetric tensor. This is a tensor which is the direct general-

isation of eqn. 3.9, in that it has zeros in the regions which couple different charges. We can decompose each

of the indices i = 1. . .χ into their different charges, so they now run over i = (d, c), where d = 1. . .χ/2,
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and c = +,−. As such, a two index tensor M has broken into four sections. Two of these are zero, so we

can write

M =






M++

+

+

, M+−

+

−

, M−+

−

+

, M−−

−

−





, (3.10)

where each Mc1,c2 corresponds to one of the blocks in eqn. 3.9. We can then generalise this to arbitrary rank

tensors simply by ensuring that the product of all the charges is +, the trivial charge.

3.3.4 Directed Networks

By assigning a direction of flow, we can think of the network as a circuit with charge preserving gates. We

then ensure that the total charge flowing into the bottom of a tensor is the same as the total charge flowing out

at the top, as in eqn. 3.11. The direction of an index can be reversed by exchanging the charge for its inverse,

the charge c̄ such that c × c̄ = 0, where 0 is the trivial charge. For the �2 symmetry, the inverse of each

charge is itself, and so we can ignore the directionality. The condition on the tensors is then that the total

ingoing charge equals the total outgoing charge. We can then perform the entire algorithm described above

at the level of the blocks in eqn. 3.10, without ever storing or multiplying any elements that are constrained

to be zero. The new blocks then carry the charge of the free indices from the contracted blocks

+

− +

+

−

+

= + −

+

−

+

− +

, (3.11)

The contraction algorithm must check that the intermediate tensor blocks produced along the contraction

path all conserve charge, otherwise their existence is forbidden, meaning the entries are all zero so the block

is neglected. In this way, the size of the tensors that must be contracted is much smaller, containing only

half the number of entries that are present in the full tensors. As such, the algorithm is capable of working in

time proportional to χ8/n, where n is the number of charges in the model (2 for �2). In particular, the entire

algorithm can be carried out by considering the blocks only, and never reconstructing the full tensors.

3.3.5 Learning how to contract

We wish to have a single algorithm which is capable of performing all the contractions required to execute

the optimisation algorithm. Checking the charge conservation condition is satisfied on each iteration is

time consuming and unnecessary. Any particular contraction allows some blocks to contract with some other

blocks. This pairing of contractable blocks will remain the same for every iteration, so we need only compute

the sequence once for every contraction in the MERA. On the first iteration of the MERA, we compute a

map associated with each contraction, which is then used on each subsequent iteration to direct the allowed

block pairing. This becomes particularly important for the rank six tensors, which have n6 blocks, but far

fewer allowed pairings.

3.4 Resource saving resulting from these modifications

Once these modifications have been added to the basic MERA algorithm described in chapter 2, we obtain

a more efficient algorithm. The symmetry constraints provide a multiplicative factor (1/2 for the �2 sym-

metry) but do not reduce the scaling of the algorithm with χ. Due to the learning process described above,
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Figure 3.4.1 : Time for one contraction of the descending superoperator with the various modifications to

the basic algorithm described here. This benchmarking performed on a machine with 3.46GHz processor.

The �2 ⊗ �2 symmetry will be introduced in the next chapter. Here, χL = χU = χ̄/5. This represents

approximately 1/30th of the time to perform one iteration of the optimisation algorithm.

the overhead associated with enforcing the symmetry is negligible. By adding the projector, we can achieve

an algorithm which scales as χ7 rather than χ8. The time taken for the contraction of the descending super-

operator described above is shown in fig. 3.4.1. This represents around 1/30th of the time to perform one

iteration of the optimisation algorithm. More details are included in appendix B.

In this chapter, we have demonstrated several methods which allow for a decrease in computational resources

required to optimise the MERA. Preprocessing the tensors allows for faster optimisation and less chance of

becoming stuck in local minima. The other two methods involve incorporating physical constraints or prop-

erties of the system of interest such that irrelevant values are not calculated and stored.
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Chapter 4

Lattice Models with Critical Lines
Over the preceding two chapters, we have described an algorithm which can be used to optimise the multi-

scale entanglement renormalisation ansatz to represent the ground state of a critical quantum spin chain. We

described how our modifications provide a speed-up in the implementation by making use of the properties

of the physical systems. In particular, we showed how the symmetries of the model could be incorporated to

gain a multiplicative decrease in required resources. We further showed how, by incorporating a projector,

we could decrease the scaling of the algorithm with the bond dimension, allowing for more accurate results.

In this chapter, we will describe a new lattice model, the perturbed cluster model, which we have con-

structed, and show how its ground state energy and phase structure can be calculated. Further, we will

identify a conformal field theory which we predict describes the thermodynamic limit of this model. Both

the Ashkin-Teller and perturbed cluster spin chains will be investigated using the MERA algorithm, so we

identify symmetries of the Hamiltonians which can be incorporated into the code. These models have a more

complex phase structure than the majority of models upon which the MERA has been applied previously.

We will examine how the conformal spectrum varies as parameters in the models are changed. Since these

models are supposed to be described by different CFTs with continuously varying scaling dimensions, it is

interesting to apply the MERA to both.

4.1 Perturbed Cluster Model

Recall from section 1.2.2 that the AT model is described by the Hamiltonian

HAT = −

N?

j=1

σ
Z
j + τ

Z
j + λσ

Z
j τ

Z
j + β

?
σ
X
j σ

X
j+1 + τ

X
j τ

X
j+1 + λσ

X
j τ

X
j σ

X
j+1τ

X
j+1

?
, (4.1)

which we think of as a pair of Ising chains which have been coupled by a four spin interaction. This model

possesses a �2 ⊗ �2 symmetry associated with spin flips about the Z axis. The group is generated by

S1 =

N?

j=1

σ
Z
j , (4.2)

S2 =

N?

j=1

τ
Z
j . (4.3)

This is the type of symmetry which can be incorporated into the MERA; on-site and Abelian. Since there

are four elements in the group, incorporating this should provide a fourfold decrease in the computation time

after the overheads associated with the enforcement are exceeded.

Using a nonlocal unitary mapping based on that described in [9], we can construct a model which we

will refer to as the perturbed cluster model (pCL). The mapping is described in appendix D). This is related

to an important model in the field of measurement based quantum computation (MBQC) [10, 66]. MBQC

is a scheme for computation which makes use of single qubit measurements only. Performing complex

multiqubit gates has proved experimentally challenging [67]. In contrast, single qubit measurements are
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Figure 4.1.1 : We can think of the perturbed cluster model as being defined on a single spin 1/2 chain. The

red operators act only on the red (odd) spins and the blue act only on the blue (even) spins. The green region

indicates one site.

much easier to carry out. Since these measurements cannot create entanglement, an entangled resource state

is used, the most common is the cluster state [10]. The cluster state is the unique ground state of the cluster

Hamiltonian HCL = −
?

N

j=1
ZjXj+1Zj+2. If such a Hamiltonian described a crystal, a quantum computer

would emerge simply by cooling it.

The perturbed cluster model is described by the Hamiltonian

HpCL =−

N?

j=1

Xj +Xj + λXjXj

−

N−1?

j=1

β [ZjXjZj+1 + ZjXj+1Zj+1 + λZjYjYj+1Zj+1] .

(4.4)

It is convenient to think of this as a linear chain as shown in fig. 4.1.1. The two colours of the operators in

eqn. 4.4 simply distinguish odd numbered spins from the even numbered ones, so X acts on odd spins and

X on even ones.

This model represents a cluster Hamiltonian with �2 ⊗ �2 symmetry respecting perturbations. That is,

the terms added to the Hamiltonian all possess the �2⊗�2 symmetry. This is a particularly important model

as its critical line represents the transition from a computational phase, where the model remains a resource

for MBQC, to the trivial phase where it cannot be used [67, 68]. Understanding this transition is of key

importance to quantum information and computation theory.

Under the mapping used to construct eqn. 4.4, the symmetry remains on-site. The new generators are

S1 =

N?

j=1

Xj , (4.5)

S2 =

N?

j=1

Xj , (4.6)

corresponding to flipping all the red (blue) spins about the X axis.

Since these models are unitarily equivalent, they have the same phase structure, shown in fig. 4.1.2. They

also have the same ground state energies, as described below. The conformal field theories describing the

two models in the continuum limit are not expected to be identical however, since the map is nonlocal and

dependent on the boundary conditions as shown in appendix D.

4.2 Ground State Energy

Using a nonlocal unitary transformation, the Ashkin-Teller model can be mapped onto a well understood

model known as the XXZ chain [69]. This allows us to calculate the ground state energy per site (GSE) due

to a Bethe Ansatz solution [70] for XXZ. The ground state energy for all three models as a function of λ is

E0 = λ− 4 sin
2
?
cos

−1
(λ)

?
?

∞

0

dx
sech(πx)

cosh(2π cos−1(λ))− λ
. (4.7)
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Figure 4.1.2 : The Ashkin-Teller model has a far more complex phase structure than the Ising model. In

particular, it has critical lines, rather than points, which allows parameters to vary while the model remains

critical. This is of interest for investigation with the MERA algorithm. This figure reproduced from [26].

Since the GSE is an exact property of these lattice models, it provides a good benchmarking quantity. Al-

lowing us to ensure the MERA is a good approximation to the ground state of the Hamiltonian.

4.3 Conformal Field Theories

The thermodynamic limit of a critical lattice model is described by a conformal field theory, as discussed

in chapter 1. In particular, the limit of the Ashkin-Teller model is generally accepted to be described by

the S1/�2 orbifold boson (obCFT) CFT [33, 35, 71–74]. We would like to note that the model has been

historically misidentified with the S1 boson CFT [73].

Recall from section 1.4 that a CFT can be completely specified by its central charge c, a list of its primary

fields φ, their associated dimensions∆φ and spin numbers, and the OPE coefficients describing the result of

bringing two fields to the same location. Here we will focus on c and ∆φ.

For the CFT, it is most convenient to parametrise the theory with the compactification radius R, which is

related to the AT coupling parameter λ [23] by

R
2
AT =

π

2 cos−1(−λ)
. (4.8)

As the radius is varied, the scaling dimensions are expected to vary continuously as the model is moved

along the critical line, due to the presence of an exactly marginal operator [22, 75]. This has fixed scaling

dimension 2 for all values of R.

Due to the nonlocal map between AT and pCL, it is not expected that the CFT description should nec-

essarily be the same. In particular, this mapping is highly sensitive to the boundary conditions as shown in

appendix D. We can construct a local unitary equivalence between the XXZ and pCL models. As such, we

expect the CFTs to be the same for these two models. The thermodynamic description of the XXZ model is

the S1 boson CFT, so we conjecture that this also describes the perturbed cluster model. This CFT also has
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Figure 4.3.1 : Full spectra for the two CFTs as the radii are varied. Notice the presence of the twist fields at

constant scaling dimensions 1/8, 9/8 and the absence of the fields with dimension 1 in (b).

a compactification radius which may be varied. This is related to the pCL parameter via

R
2
pCL =

2

π

?
π − cos

−1
(λ)

?
. (4.9)

Both the S1 boson and S1/�2 orbifold boson CFTs have central charge c = 1.

The S1 boson CFT is the field theory of a free massless boson on a circle [33]. The scaling dimensions

of the quasivacuum states for this theory are given by

∆e,m =
e2

R2
+

m2R2

4
, (4.10)

where e and m are two integers labelling the fields. Descendants have scaling dimensions ∆e,m + n, for

integer n. More details can be found in [33–35, 37]. The scaling dimensions of the obCFT are the same as

the S1 theory, however the degeneracy is halved since m is restricted to be nonnegative. The obCFT also

has a fixed or twisted sector. The scaling dimensions of the fields in this sector do not change as the radius

is varied. The S1 boson lacks this sector, and as such these fields should be absent in the MERA data if the

conjecture is correct. The full spectra of these theories is shown in fig. 4.3.1, and more details are included

in appendix E.

We have now constructed all the tools necessary to simulate these symmetric critical spin models efficiently.

We have described two models of interest, the Ashkin-Teller and perturbed cluster spin chains. Using a uni-

tary map to the XXZ model, we have calculated the ground state energies of the two models. We have also

identified CFTs hypothesised to describe the thermodynamic limit of these lattices. In the next chapter, we

apply the �2 ⊗ �2 symmetric MERA to simulating these two chains. We then extract conformal data, and

compare it to that of the two CFTs described here.
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Chapter 5

�2 ⊗ �2 Symmetric MERA Examination of

the pCL and AT Models
In the preceding chapters, we have described the MERA algorithm, and how it can be adapted to incorporate

symmetries in the model under examination. This leads to a decrease in the computational resources required

to implement the algorithm. In the last chapter, we described a pair of models; the Ashkin-Teller (AT) and

perturbed cluster (pCL) models. Each of these has a �2 ⊗ �2 on-site symmetry. In this chapter, we will

demonstrate how a �2 ⊗ �2 symmetric MERA can be used to extract physical properties of these models. In

particular, we will show how we can recover the ground state energy of these two models as the Hamiltonian

parameters are varied, remaining on the critical line at all times. We will then examine the conformal data

extracted from the converged MERA, and how this matches the conjectured CFT descriptions. We begin by

examining the numerical ground state energy per site. Later, we extract the conformal data as the coupling

parameter is varied. In particular, we obtain the central charge, and examine how the scaling dimensions

vary as the model is moved along the critical line. The MERA’s ability to reproduce the behaviour of models

at critical points has been demonstrated [3–5, 60, 61, 76, 77], however the impact of moving along critical

lines has not previously been investigated.

5.1 � 2 ⊗ � 2 symmetry

The �2 ⊗ �2 symmetry present in both the AT and pCL models is enforced in the way described in chapter

3. Here, there are four charges, corresponding to the four irreducible representations of �2 ⊗ �2. We

label these (0, 0), (0, 1), (1, 0) and (1, 1), and the fusion rules are element-wise addition modulo 2 (i.e.

(1, 0)× (1, 1) = (0, 1)).

Each of the scaling operators (eigenoperators of S) can then be assigned a unique charge ¢. The matrix

representing it has all zero elements in all charge sectors except that associated with ¢. This allows us to

decompose the spectrum into the four charge sectors.

5.2 Ground State Energy

Since we know the ground state energy (GSE) per site exactly, we can use this to check the convergence of

our symmetric MERA algorithm. Fig. 5.2.1 shows the ground state energies obtained from the MERA by

E = . (5.1)

The relative error in the GSE is given by

∆E =
Eexact − EMERA

Eexact

, (5.2)
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Figure 5.2.1 : Ground state energies (GSE) extracted from the MERA. (a) and (c) show the GSE and the

error for the Ashkin-Teller model. Here, χL = 12, χU = 8 and no projector was used. In total, 100

points were converged. (b) and (d) show the GSE and the error for the perturbed cluster model. Here,

χL = χU = 20 = χ̄/4. In total, 50 points were converged. The lines marked ‘exact’ are obtained from

numerical integration of eqn. 4.7. We clearly see a decrease in the error at larger χ as expected.

which is clearly only positive if (Eexact − EMERA) < 0. The exact solution is obtained by numerically

integrating eqn. 4.7. The MERA in the absence of a projector represents a valid quantum state, and as such,

the GSE extracted must be an upper bound on the true GSE. From fig. 5.2.1 (b), we see that this is the case.

Fig. 5.2.1 (d) indicates that the presence of a projector, and as such a MERA which is not necessarily an

exact quantum state does not significantly degrade the validity of the output; the numerical GSE remains an

upper bound at all times.

5.3 Conformal Data

In this section, we will present and comment on the conformal data obtained from the symmetric MERA for

the two models under investigation. We will use the parameter R, which is the compactification radius of the

conjectured CFT description. Recall, these are related to the coupling parameters by

R
2
AT =

π

2 cos−1(−λ)
, R

2
pCL =

2

π

?
π − cos

−1
(λ)

?
. (5.3)
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We will examine how the MERA scaling dimensions vary as R is varied, but we begin by investigating the

central charge.

5.3.1 Varying R-Stepping method

In the following results, the MERA was initially converged at a single point (λ = −
√
2/2). Once this had

ceased to vary by more than a threshold value on a given iteration, the optimisation was declared complete.

The tensors from this MERA were then used as the initial tensors for the next point and the process was

repeated. In this way, the optimisation time could be minimised, since the change in the ground state is

assumed to be small between each point.

5.3.2 Central Charge

As discussed above, one of the pieces of data required to specify a CFT is the central charge. This labels

classes of CFT and is identically 1 for all values of R in both the S1 boson and obCFT. The values obtained

from the �2 ⊗ �2 symmetric MERA using eqn. 2.27 are shown in fig. 5.3.1.
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Figure 5.3.1 : Central charges extracted from the MERA. (a) shows c for the Ashkin-Teller model. Here,

χL = 12, χU = 8 and no projector was used. In total, 100 points were converged. (b) shows the c for the

perturbed cluster model. Here, χL = χU = 20 = χ̄/4. In total, 50 points were converged. The lines marked

‘exact’ are the expected central charges from the CFTs.

For all values of R, the central charge remains within approximately 3% of the value expected from

the CFT. As we move towards the ends of the critical line, we observe the error increase in fig. 5.3.1 (a)

and (b), and fig. 5.2.1 (c) and (d). At the ends of the critical lines, new operators become relevant which

move the model away from criticality [78]. We conclude that these marginally irrelevant fields break scale

invariance, thus making the MERA used here, which has imposed scale invariance, invalid. This is consistent

with previous MERA simulations, particularly with the Heisenberg model [4]. This spin chain is unitarily

equivalent to both Hamiltonians considered here when λ = 1.

29



5.3.3 Scaling Dimensions

The central charge obtained from both MERA is consistent with the CFTs of interest, however this is not

enough to completely specify the conformal field theory. Thus, we must examine the other conformal data.

In particular, we now look at the scaling dimensions from the MERA. We begin by investigating two points

along the critical line of the Ashkin-Teller model. In particular, we will present scaling dimensions for the

relevant and marginal fields at the decoupling point (λ = 0, R2
AT

= 1) where the two Ising chains are

uncoupled, and one end of the critical line, which we will refer to as the KT point, where, λ = −

√
2

2
, R2

AT
=

2.

5.3.3.1 Ashkin-Teller Decoupling and KT points

Recall from section 1.4 that there are two types of fields present in the CFT, primary fields, and the descen-

dants, which are constructed from the primaries. The associated scaling dimensions for all relevant fields

are shown in fig. 5.3.2. This shows the clear signature of the orbifold theory, having both moving and fixed

sectors. By this, we mean that the scaling dimensions in the (0, 0) and (1, 1) sectors vary as the coupling

parameter is changed, whereas those in the remaining sectors are fixed. We see that the accuracy of the

MERA decreases as the scaling dimension increases. This is consistent with the observed behaviour for

other models, for example [4, 76, 77]. The number of descendent fields in the CFT is infinite, and due to the

finite value of χ, the MERA can only recover a finite subset. Those with smallest scaling dimension are the

most accurate, since they are close to the ground state of the theory [61].

We have shown that the MERA provides scaling dimensions for the Ashkin-Teller model which are

consistent with the obCFT, which is thought to describe its thermodynamic limit. This has been demonstrated

at two values of the coupling In the next section, we show how the MERA captures the behaviour of the CFT

as the parameter is varied.
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Figure 5.3.2 : Scaling dimensions in the four charge sectors of the Ashkin-Teller model at the decoupling

point (λ = 0) and the KT point (λ = −

√
2

2
). For (a)-(d), χL = 28 = χ̄/5, χU = 12. For (e)-(h),

χL = 36 = χ̄/4, χU = 20. Open symbols denote obCFT scaling dimensions, with primary fields marked in

red, descendants in black. φ is an index assigned to the states in each sector.
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5.3.4 Continuously Varying Criticality

As the coupling parameter is varied, the scaling dimensions of the two CFTs also change. This is a feature

which is not present in CFTs with c < 1. This class of models represents the majority of the MERA

literature for which conformal data has been published. Investigating the ability of the MERA to replicate

this behaviour was one of the main aims of this project, and as such, the current section represents one of the

main results of this thesis.

In fig. 5.3.3, we show the data obtained from the MERA in two representative symmetry sectors for both

the Ashkin-Teller and perturbed cluster chains. The full result set can be seen in appendix C.

In the (0, 0) sector, the two CFTs are identical apart from a doubling of the degeneracy in the S1 model.

The CFTs differ significantly in the (0, 1) sector however. The S1 boson theory does not have a fixed sector,

and for the pCL model, we recover the behaviour predicted by the conjectured CFT, providing evidence that

this is indeed the correct limiting description.

Due to the extremely large computational investment required to produce this large density of sample

points, the values of χ used here are much smaller than those which give the conformal data presented in

fig. 5.3.2. As expected, this leads to a less accurate results, particularly for larger scaling dimension.

The region of fig. 5.3.3 (d) (enlarged in fig. 5.3.4) indicated by a box is of particular interest, and we

discuss the implications below.
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Figure 5.3.3 : Scaling dimensions in two of the four symmetry sectors. (a) and (c) are results for the Ashkin-

Teller model. Here, χL = 12, χU = 8 and no projector was used. In total, 100 points were converged. (b)

and (d) show the results in the same sectors for the perturbed cluster model. Here, χL = χU = 20 = χ̄/4.

In total, 50 points were converged. Full results can be seen in appendix C. The indicated region is discussed

in the main text, and are shown enlarged in fig. 5.3.4.
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Figure 5.3.4 : Enlargements of the boxed region in fig. 5.3.3 (d). Here, only a subset of the scaling dimen-

sions are shown for clarity. Discussed in the main text.

5.3.4.1 Avoided Crossing at R2
pCL

= 1

From fig. 5.3.4, we notice an avoided crossing in the MERA output which does not occur in the CFT asso-

ciated with this model. The states in the CFT with these energies become degenerate at the crossing point.

In the CFT, there exists a larger symmetry group, giving a larger set of charges or quantum numbers. The

crossing fields do not have a complete set of matching quantum numbers, so cannot mix. The �2 ⊗ �2 sym-

metry imposed in the MERA is not the full symmetry group of the models described here. The Ashkin-Teller

model has a D4 symmetry, where the increased symmetry is associated with swapping red and blue. By not

imposing the full symmetry of the model, the tensors forming the MERA have nonzero elements which are

forbidden in the physical system. This results in coupling between states which should be uncoupled, pro-

viding a means for an avoided crossing to occur. This larger symmetry group is non-Abelian, and therefore

to enforce this requires significant modifications [63, 64] to the algorithm described in chapter 3. We expect

that imposing this would remove the avoided crossing, and speed up computation time. Increasing χ should

lead to a better representation of the true ground state of the model, and as such better replication of the

behaviour expected from the CFT.

5.4 Insights

From the �2 ⊗ �2 symmetric MERA used here, we have been able to extract ground state energies as the

models are moved along their critical lines. These are consistent with the exact GSE obtained from the Bethe

Ansatz solution of the unitarily equivalent XXZ model. At all times, the numerical GSE remains an upper

bound on the true energy, in both the MERA without a projector, which produces a true wavefunction, and

the modification which incorporates a projector, thus giving only an approximate wavefunction.

The behaviour of the scaling dimensions obtained with the symmetric MERA is consistent with that

predicted by the CFTs. We have used this to provide evidence in support of our conjecture that the thermo-

dynamic limit of the perturbed cluster model is described by the S1 boson conformal field theory.

By investigating the behaviour of the errors in the GSE and central charge, we have seen behaviour

consistent with new fields becoming marginal and relevant in the conformal field theories. These marginally

irrelevant fields break scale invariance, breaking the assumptions used in the construction of the MERA.

As a result of not enforcing the full symmetry of the models, we observe avoided crossings as operators

become degenerate. We expect that incorporating the full, non-Abelian symmetry would prevent this, whilst

also providing further computational speed-up.

33



Chapter 6

Discussion, Conclusions and Future Work
In this thesis, we have developed an algorithm to efficiently optimise the multiscale entanglement renor-

malisation ansatz to represent the ground state of a large class of critical quantum spin chains. We have

incorporated Abelian symmetries present in the Ashkin-Teller and perturbed cluster Hamiltonians, provid-

ing a reduction in the computational resources required to implement the algorithm by multiplicative factor.

Further, we have incorporated an approximation into the algorithm. This introduces a controlled amount of

error into the converged tensor network, and allows for an improvement in the scaling of the algorithm with

χ, the parameter controlling the accuracy of the approximation to the ground state. The reduction in the

computational requirements of these modified algorithms has also been shown.

This work has examined how the ground state energy and conformal data can be replicated as the Hamil-

tonian is moved along the critical line. Previous work has looked at critical points or single points on critical

lines, so this represents a major advance. We have demonstrated how the MERA can replicate the behaviour

expected from the conformal field theory. In particular, we have observed behaviour consistent with the

S1/�2 orbifold boson CFT from simulation of the Ashkin-Teller lattice. We also extract scaling dimensions

for the perturbed cluster spin chain which are consistent with the continuum limit being described by the S1

boson conformal field theory.

The results presented here show how avoided crossings can occur if the full symmetry group is not

explicitly enforced. In particular, we have imposed the �2 ⊗ �2 Abelian subgroup of the full D4 symmetry

of the Ashkin-Teller chain. A decrease in the accuracy of the MERA is observed as new fields become

relevant in the associated CFT. The effect of these is to move the model away from criticality and break the

assumption of scale invariance; a crucial assumption in the ansatz.

We have constructed a model, the perturbed cluster model and used unitary equivalence to an exactly

solved model to deduce the ground state energy. We have used the local equivalence to the XXZ model to

conjecture the CFT describing the thermodynamic limit of this Hamiltonian. Using our symmetric MERA,

we have provided evidence to support this hypothesis.

A clear next step is to optimise a MERA with larger χ to extract more accurate conformal data. This

may require a different MERA scheme. The modified binary MERA described in [4] can be optimised

with resources that scale as χ6, potentially allowing far more accurate approximations. Enforcing a larger

symmetry group, the computational requirements could be reduced. Both models considered here have and

on-site D4 symmetry. To incorporate this non-Abelian symmetry would require significant modification to

the algorithm described here, but would potentially provide more accurate results, for lower computational

cost.

Although not described here, it is possible to extract scaling dimensions corresponding to a class of

highly nonlocal operators from the MERA at no additional computational expense [77]. Examining the

behaviour of these operators as the coupling parameters are varied is currently under way.

It has been suggested that the ability of the MERA to represent the ground state of 1D spin chains is a

discrete version of the AdSD+1/CFTD correspondence [44, 79, 80]. Although the MERA has been shown to

reproduce the scaling dimensions of the conformal field theory, no method has been described which allows

extraction of the ‘spin’ number [35]. The spin quantum number in the CFT is associated with rotational

invariance of spacetime, a property which has no clear analogy in the MERA. Extraction of the spin number

is possible using other numerical techniques, such as exact diagonalisation [81]. The recovery of this data
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from the MERA remains an open question, however if the MERA truly represents a discretised anti-de Sitter

space, it would appear that this should be possible.

In conclusion, this work represents the first attempt to apply the MERA to models with complex phase

structures, and to recover the behaviour of the model as the scale invariant ground state is varied.
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Appendix A

A detailed explanation of the algorithm
In this appendix, we will present a detailed overview of a particular subroutine, so the code in appendix F

can be understood.

We number tensors right to left top to bottom, so a generic 6 index tensor is labelled

1

4

23

56

A.1 Contract

The workhorse routine for the MERA is the ‘Contract’ algorithm. The full code can be seen in section F.2.

For the symmetric codes, this is too complicated to describe line by line, so we describe its general purpose

and structure.

The routine takes as input a pair of tensors A and B, and vectors Aindices, Bindices containing the

indices which are to be contracted. Thus, if the first entry of Aindices=3 and the first entry of Bindices=2,

then the third index of A will be contracted with the second index of B. The input path contains a list of the

blocks in the symmetric tensors A and B which may be contracted. On the first run, this is empty and the

routine explicitly checks charge conservation. After this, so long as the ordering of the blocks in storage is

the same, the allowed block pairs remains the same. The routine outputs the result of the contraction C and

the vector of blocks path if this was previously empty.

1 function [C,path]=Contract(A,B,Aindices,Bindices,path)

We use the MATLAB language to implement the MERA as it has highly optimised matrix manipulation

libraries. To take advantage of this, we convert all tensors and tensor operations to an equivalent matrix and

matrix operation. This is the primary role of the Contract subroutine. A contraction follows the following

structure:

• Convert tensors to matrices by permuting then fusing.

• Compute matrix product.

• Convert the matrices back to tensors by unfusing then permuting.
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Suppose we wish to contract the third index of one tensor with the second of another, with diagram

A

B

.

First, we rearrange the indices to place all noncontracted indices on the outside. This can be done with

MATLAB’s ‘permute’ function. The result is then

.

We now fuse the outer indices into a single index. This uses MATLAB’s ‘reshape’ command. This gives a

new index i = i1 × i2. If we are contracting over more than one index, these are also fused. We then obtain

a pair of matrices.

≡ .

This can then be multiplied using the highly optimised and parallelised MATLAB routine. We must then

return the matrix to its tensor form by unfusing the indices.

≡ → .

We have now obtained a tensor C which is the contracted version of the start diagram. The ordering of the

indices in C is first all the uncontracted indices from A in order followed by those from B in order.

The symmetric tensors are stored in arrays of blocks. For example, a four index �2 symmetric tensor is

stored as

=






1

++

++

, 2

++

−−

, 3

−−

++

, 4

−−

−−

, 5

+−

+−

, 6

+−

−+

, 7

−+

+−

, 8

−+

−+





.

In the case of the above contraction, path would then be




















1 1

1 2

1 7

1 8

2 3

2 4

2 5

2 6

3 1

...




















where the first column labels blocks in A and the second blocks in B and only the first 9 pairs are shown.
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A.2 ASuperoperatorL

Wewill now describe line by line how a particular subroutine functions. We will use one part of the ascending

superoperator as a representative example. This routine is one of 3 required to ascend the Hamiltonian by

one layer. Here, we present the routine without a projector for simplicity.

The challenge is to contract the network in an optimal way. Particular choices of contraction order lead

to different time and memory costs. We will describe the subroutine line by line. This subroutine is required

to contract fig. A.2.1.

w w

wd wd

→h

u

ud

Figure A.2.1 : The left ascending superoperator

Here, we describe the routine line by line.

3 persistent path1 path2 path3 path4 path5 path6

This line generates empty vectors if they do not already exist. These are used to ensure the correct blocks

contract with the correct blocks without having to check. During the first time this routine is run, these vectors

are filled with instructions, requiring the Contract routine to check the charges on each leg; an expensive

process. On successive runs, this vector is nonempty, and allows the contraction to proceed without any

charge checking, greatly speeding up the process, whilst allowing the Contract routine to remain general.

5 [temp1,path1]=Contract(w_d,w,4,3,path1);

If the vector path1 exists, this is used for the contraction, otherwise it proceeds with checking the associated

charges. This line contracts the fourth index of w† with the third index of w (indicated in red).

After this contraction has been performed, the new network is
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The contraction then continues with the legs indicated in red.

6 [temp2,path2]=Contract(w_d,w,[2,3],[1,2],path2);

This gives the network

We now contract u† with u.

7 [temp3,path3]=Contract(u_d,u,3,1,path3);

The resulting diagram is

The remaining lines continue in this way, sequentially making the diagram more compact.

9 [temp4,path4]=Contract(temp3,o,[3,4],[1,3],path4);

10 [temp5,path5]=Contract(temp1,temp4,[2,3,4,5],[2,5,4,6],path5);

11 [temp6,path6]=Contract(temp5,temp2,[3,4],[2,3],path6);

With the diagrammatic version being
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→ →

This is not a Hamiltonian, since the indices are in the wrong order. The last two lines bring the indices

and their associated charges into the correct order, and the MERA optimisation can continue.

13 A(1,:)=cellfun(@(x)permute(x,[3,1,4,2]),temp6(1,:),'UniformOutput',0);

14 A(2,:)=cellfun(@(x)x(:,[3,1,4,2]),temp6(2,:),'UniformOutput',0);

We finally obtain the ascended Hamiltonian

The largest tensor formed in this routine has 6 indices, so the memory scaling will be χ6. The time

scaling can be calculated by counting indices. The number of indices included in a given contraction is the

power of χ for that contraction. That is, the total number of indices possessed by the two tensors involved,

with the shared legs only being counted once. Here, we see this is 8. Thus this routine has time scaling χ8,

which is optimal for the ternary MERA used here.

The entire code for this routine is below.

1 function A=ASuperoperatorL(u,u_d,w,w_d,o)

2

3 persistent path1 path2 path3 path4 path5 path6

4

5 [temp1,path1]=Contract(w_d,w,4,3,path1);

6 [temp2,path2]=Contract(w_d,w,[2,3],[1,2],path2);

7 [temp3,path3]=Contract(u_d,u,3,1,path3);

8

9 [temp4,path4]=Contract(temp3,o,[3,4],[1,3],path4);

10 [temp5,path5]=Contract(temp1,temp4,[2,3,4,5],[2,5,4,6],path5);

11 [temp6,path6]=Contract(temp5,temp2,[3,4],[2,3],path6);

12

13 A(1,:)=cellfun(@(x)permute(x,[3,1,4,2]),temp6(1,:),'UniformOutput',0);

14 A(2,:)=cellfun(@(x)x(:,[3,1,4,2]),temp6(2,:),'UniformOutput',0);
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Appendix B

Scaling of Algorithms with χ

We have fitted a power law of the form aχb to the time taken for the various algorithms to perform one

contraction of the descending superoperator. Each point in fig. B.0.1 is averaged over five contractions to

reduce noise from background processes. The fit parameters are shown in table B.0.1.

5 10 15 20 25 30 35 40 45 50 55

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

χ

T
im

e
(S
ec
o
n
d
s)

Nonsymmetric

Nonsymmetric fit

Nonsymmetric with projector

Nonsymmetric with projector fit

�2

�2 fit

�2 with projector

�2 with projector fit

�2 ⊗ �2

�2 ⊗ �2 fit

�2 ⊗ �2 with projector

�2 ⊗ �2 with projector fit

Figure B.0.1 : Time for one contraction of the descending superoperator with the various modifications to

the basic algorithm described here. Here, χL = χU = 1/5χ̄. This represents approximately 1/30th of the

time to perform one iteration of the optimisation algorithm. Each point is averaged over the time taken for 5

contractions to reduce noise from background processes. This benchmarking performed on a machine with

3.46GHz processor. The fit parameters are shown in table B.0.1.

B. 1



Algorithm a b

Nonsymmetric 1.336× 10−8 7.108

Nonsymmetric with projector 1.267× 10−7 6.058

�2 2.617× 10−8 6.693

�2 with projector 2.467× 10−7 5.715

�2 ⊗ �2 2.029× 10−9 7.189

�2 ⊗ �2 with projector 1.334× 10−7 5.817

Table B.0.1 : Fit parameters for the time to contract the descending superoperator once. Fitted to power law

of the form aχb

As expected, adding the symmetry does not have a large impact on the scaling of the algorithm. Adding

the projector reduces the power b by approximately 1 as designed. Overall, the scaling appears to be one

power better than expected. We attibute this to the highly optimised matrix operations present in MATLAB.

These improve the naive scaling assumed in the body of this thesis.
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Appendix C

Full Conformal Data for the Ashkin-Teller

and Perturbed Cluster Models
In this appendix we present the full set of relevant scaling dimensions in all four charge sectors of the

Ashkin-Teller and perturbed cluster models. See chapter 5 for analysis.

C.1 Ashkin-Teller

Here, the MERA was converged at the KT point (λ = −

√
2

2
), then stepped out from here as described in

sec. 5.3.1. Recall that

R
2
AT =

π

2 cos−1(−λ)
, (C.1)

so the initial convergence was at R2
AT

=1.
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C
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tr
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C
h
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g
e

MERA

Exact

a) Central charge for AT.

Figure C.1.1 : Central charge extracted from the MERA for the Ashkin-Teller model. Here, χL = 12,

χU = 8 and no projector was used. In total, 100 points were converged. The line marked ‘exact’ are the

expected central charge from the obCFT. 5.
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c) (0, 1) sector.
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d) (1, 0) sector.

Figure C.1.2 : Scaling dimensions in the four charge sectors of the Ashkin-Teller model. Here, χL = 12,

χU = 8 and no projector was used. In total, 100 points were converged. The boxed region is discussed in

chapter 5. (a) and (c) are shown in the main text.

C. 2



C.2 Perturbed Cluster

Here, the MERA was converged at the KT point (λ = −
√
2/2), then stepped out from here as described in

sec. 5.3.1. Recall that

R
2
pCL =

2

π

?
π − cos

−1
(λ)

?
, (C.2)

so the initial MERA was at R2
pCL

= 0.5.
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b) Central charge for pCL.

Figure C.2.1 : Central charge extracted from the MERA for the perturbed cluster model. Here, χL = χU =

20 = χ̄/4. In total, 50 points were converged. The line marked ‘exact’ are the expected central charges from

the S1 boson CFT. Repeated from chapter 5.
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Figure C.2.2 : Scaling dimensions in the four charge sectors of the perturbed cluster model. Here, χL =

χU = 20 = χ̄/4. In total, 50 points were converged. The boxed region is discussed in chapter 5. (a) and (c)

are shown in the main text.
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Appendix D

Duality Mappings
In this appendix, we show how the perturbed cluster model is dual to the Ashkin-Teller model. We will

investigate how this mapping is dependent on the boundary conditions and how the symmetries map across.

Finally, we will construct the map linking both AT and pCL to the XXZ model. We will show how the

equivalence between pCL and XXZ is local and insensitive to boundaries.

D.1 Ashkin-Teller to perturbed cluster

Figure D.1.1 : We can think of the Ashkin-Teller model as being defined on a pair of parallel chains. The

σ operators act only on the red chain and the τ act only on the blue. The lines represent coupling present in

the Hamiltonian. The green region indicates one site.

The Hamiltonian describing the Ashkin-Teller model (AT) on the chain in fig. D.1.1 is:

H = −

N?

j=1

σ
Z
j + τ

Z
j + λσ

Z
j τ

Z
j + β

?
σ
X
j σ

X
j+1 + τ

X
j τ

X
j+1 + λσ

X
j τ

X
j σ

X
j+1τ

X
j+1

?
(D.1)

where
?
σX , σY , σZ

?
,
?
τX , τY , τZ

?
are two sets of mutually commuting Pauli operators, that is they obey

the usual Pauli relations within a set and

[σ
X,Y,Z

j
, τ

X,Y,Z

k
] = 0, (D.2)

for all j, k. A site is indicated by the green region in fig. D.1.1.

By generalising a mapping proposed in [9], we obtain a map

σ
Z
j → Xj τ

Z
j → Xj

σ
X
j →

?
j?

k=1

Xk

?

Zj τ
X
j → Zj





N?

k=j

Xk



 (D.3)

With the end spins transforming as above, where the products are not included if the upper limit is smaller

than the lower, i.e.

σ
X
1 → Z1 τ

X
N → ZN . (D.4)
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Figure D.1.2 : The chain on which the perturbed cluster model (pCL) is defined

So the Hamiltonian transforms to:

H̄ =−

N?

j=1

Xj +Xj + λXjXj −

N−1?

j=1

β

?

(

j−1?

k=1

Xk)Zj(

j?

k=1

Xk)Zj+1

+ Zj(

N?

k=j+1

Xk)Zj+1(

N?

k=j+2

Xk)

+ λ



(

j−1?

k=1

Xk)ZjZj(

N?

k=j+1

Xk)(

j?

k=1

Xk)Zj+1Zj+1(

N?

k=j+2

Xk)









(D.5)

= −

N?

j=1

Xj +Xj + λXjXj −

N−1?

j=1

β [ZjXjZj+1 + ZjXj+1Zj+1 + λZjYjYj+1Zj+1] . (D.6)

This is the cluster Hamiltonian with 1,2 and 4 spin symmetry respecting perturbations. Defined on the chain

in fig. D.1.2. The cluster model (on a line) is defined as the ground state of the cluster Hamiltonian

HCL = −

N−1?

j=1

ZjXjZj+1 + ZjXj+1Zj+1. (D.7)

It has been shown that while this state is not a universal resource for measurement based quantum com-

putation (MBQC), any single qubit unitary gate can be performed with perfect fidelity over arbitrary chain

lengths [66]. Moreover, there exists a phase defined by the symmetry of the model, such that for symmetry

respecting perturbations, a phase transition must be crossed to reach the product state. Within this phase, the

identity gate is protected [67]. The perturbed cluster model lies on the boundary of this phase.

For convenience, we give the reverse mapping

Xj → σ
Z
j Xj → τ

Z
j

Zj →

?
j−1?

k=1

τ
Z
k

?

σ
X
j Zj → τ

X
j





N?

k=j+1

σ
Z
k



 (D.8)

D.1.1 Generating Set for 2 Site Operators

We now consider how symmetry respecting and breaking perturbations map between the models. A gener-

ating set for up to 2 site (4 spin) perturbations, is given by:

XjIjIj+1Ij+1 ZjIjIj+1Ij+1 (D.9)

IjXjIj+1Ij+1 IjZjIj+1Ij+1 (D.10)

IjIjXj+1Ij+1 IjIjZj+1Ij+1 (D.11)

IjIjIj+1Xj+1 IjIjIj+1Zj+1 (D.12)
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Allowing sums and products of these enables construction of any 2 site operator. Then these map to:

σ
Z
j IjIj+1Ij+1

?
j−1?

k=1

τ
Z
k

?

σ
X
j (D.13)

Ijτ
Z
j Ij+1Ij+1 τ

X
j





N?

k=j+1

σ
Z
k



 (D.14)

IjIjσ
Z
j+1Ij+1

?
j?

k=1

τ
Z
k

?

σ
X
j+1 (D.15)

IjIjIj+1τ
Z
j+1 τ

X
j+1





N?

k=j+2

σ
Z
k



 (D.16)

Clearly the Y pCL operators map to highly nonlocal operators in AT.

D.1.2 Generating Set for Symmetry Respecting 2 Site Operators

The symmetry respecting 2 site operators are those which commute with representations of �2 ⊗ �2 =

D2, that is those 4 spin operators commuting with both XjXj+1 and XjXj+1. A generating set for these

operators is:

XjIjIj+1Ij+1 ZjXjZj+1Ij+1 (D.17)

IjXjIj+1Ij+1 IjZjXj+1Zj+1 (D.18)

IjIjXj+1Ij+1 (D.19)

IjIjIj+1Xj+1 (D.20)

These then map to:

σ
Z
j IjIj+1Ij+1 σ

X
j σ

X
j+1 (D.21)

Ijτ
Z
j Ij+1Ij+1 τ

X
j τ

X
j+1 (D.22)

IjIjσ
Z
j+1Ij+1 (D.23)

IjIjIj+1τ
Z
j+1 (D.24)

These are all 2 site symmetry respecting operators under the AT symmetry operators σZ
j
σZ
j+1

and τZ
j
τZ
j+1

,

which define the symmetry in the AT model. Thus, all symmetry respecting operators acting on 2 sites in the

Ashkin-Teller model map to symmetry respecting operators acting on 2 sites on the perturbed cluster chain.

The products of the stabilisers (and their images) are:





N−1?

j=1

ZjXjZj+1



 = Z1





N−1?

j=1

Xj



ZN → σ
X
1 σ

X
N (D.25)





N−1?

j=1

ZjXj+1Zj+1



 = Z1





N?

j=2

Xj



ZN → τ
X
1 τ

X
N (D.26)

D.2 Boundaries for Even Chains

We now consider how the boundary terms map. We begin by considering a chain with an even number of

spins. Let the pCL chain be even length as in fig. D.2.1, that is it begins with a red spin and terminates

with a blue spin. Then at the edges, there are 4 operators (2 anticommuting pairs) commuting with all the
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Figure D.2.1 : A pCL chain with an even number of spins.

stabilisers, thus defining 2 qubits (i.e. 2 logicalX operators and 2 logical Z operators). These operators (and

their AT images) are:

X1Z1 →

?
N?

k=1

σ
Z
k

?

τ
X
1 (D.27)

ZNXN → σ
X
N

?
N?

k=1

τ
Z
k

?

(D.28)

Z1 → σ
X
1 (D.29)

ZN → τ
X
N (D.30)

These map to non-local operators in AT. Local boundary terms in AT and their images are:

σ
Z
1 τ

X
1 σ

Z
2 → X1Z1

?
N?

k=3

Xk

?

(D.31)

τ
Z
N−1σ

X
N τ

Z
N →

?
N−2?

k=1

Xk

?

ZNXN (D.32)

σ
X
1 → Z1 (D.33)

τ
X
N → ZN (D.34)

All the 2 site, symmetry respecting operators defined above map in the same way on the edges.

D.3 Odd length chain

Adding a red spin to the right hand edge of the chain clearly does not change the mapping of the bulk

operators. The symmetry respecting edge operators map as above for the generators containing a single X .

The cluster stabiliser which has a Z on the additional red spin maps as

ZN−1XN−1ZN → σ
X
N−1σ

X
N (D.35)

as above. Here N is the half filled site containing the added red spin. The other operators acting on the end

map as

ZN−1XN → τ
X
N−1σ

Z
N (D.36)

ZN →

?
N−1?

k=1

τ
Z
k

?

σ
X
N . (D.37)

If a blue spin is added to the left end of the chain, then

X1Z2 → σ
X
2 (D.38)

Z1X2Z2 → τ
X
1 τ

X
2 (D.39)

Z1 → τ
X
1

?
N?

k=2

σ
Z
k

?

. (D.40)

Adding a blue spin to the left and a red spin to the right is described by these transformations.
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(a) Intersite splitting (b) Intrasite splitting

Figure D.4.1 : Ways to define sites 1 and N on even length periodic chains. Despite having the same number

of spins, chain (a) has N = 8, whereas (b) has N = 9.

D.4 Periodic Boundary Conditions

Given a system with periodic boundary conditions, the ’first site’ can be chosen in one of 2 ways, as shown

in fig. D.4.1. For the chain in fig. D.1(a), the perturbed cluster Hamiltonian is

H =− β [ZNXNZ1 + ZNX1Z1 + λZNYNY1Z1]−

N?

j=1

Xj +Xj + λXjXj

−

N−1?

j=1

β [ZjXjZj+1 + ZjXj+1Zj+1 + λZjYjYj+1Zj+1] .

(D.41)

Using the mappings above, this becomes

H =− β

?

σ
X
1 σ

X
N

?
N?

k=1

τ
Z
k

?

+

?
N?

k=1

σ
Z
k

?

τ
X
1 τ

X
N + λσ

Y
1 τ

Y
1

?
N−1?

k=2

σ
Z
k τ

Z
k

?

σ
Y
Nτ

Y
N

?

−

N?

j=1

σ
Z
j + τ

Z
j + λσ

Z
j τ

Z
j −

N−1?

j=1

β
?
σ
X
j σ

X
j+1 + τ

X
j τ

X
j+1 + λσ

X
j τ

X
j σ

X
j+1τ

X
j+1

?
.

(D.42)

If this contains highly nonlocal terms due to the boundary. If the AT Hamiltonian were defined on the

periodic lattice, it would be

H =− β
?
σ
X
Nσ

X
1 + τ

X
N τ

X
1 + λσ

X
N τ

X
N σ

X
1 τ

X
1

?
−

N?

j=1

σ
Z
j + τ

Z
j + λσ

Z
j τ

Z
j

−

N−1?

j=1

β
?
σ
X
j σ

X
j+1 + τ

X
j τ

X
j+1 + λσ

X
j τ

X
j σ

X
j+1τ

X
j+1

?
.

(D.43)

Which would map to

H =− β









N−1?

j=1

ZjXjZj+1



+





N−1?

j=1

ZjXj+1Zj+1



+ λ





N−1?

j=1

ZjXjZj+1ZjXj+1Zj+1









−

N?

j=1

Xj +Xj + λXjXj −

N−1?

j=1

β [ZjXjZj+1 + ZjXj+1Zj+1 + λZjYjYj+1Zj+1] .

(D.44)
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=− β









N−1?

j=1

ZjXjZj+1



+





N−1?

j=1

ZjXj+1Zj+1



+ λ





N−1?

j=1

ZjYjYj+1Zj+1









−

N?

j=1

Xj +Xj + λXjXj −

N−1?

j=1

β [ZjXjZj+1 + ZjXj+1Zj+1 + λZjYjYj+1Zj+1] .

(D.45)

=− β





N−1?

j=1

(ZjXjZj+1 + ZjXj+1Zj+1 + λZjYjYj+1Zj+1)





−

N?

j=1

Xj +Xj + λXjXj −

N−1?

j=1

β [ZjXjZj+1 + ZjXj+1Zj+1 + λZjYjYj+1Zj+1] .

(D.46)

D.5 Degeneracy with open and periodic boundaries

Considering the bare models with open boundary conditions, that is:

HAT,bare =

N−1?

j=1

σ
X
j σ

X
j+1 + τ

X
j τ

X
j+1 (D.47)

HCl,bare =

N−1?

j=1

ZjXjZj+1 + ZjXj+1Zj+1 (D.48)

It is well know that the cluster Hamiltonian with open boundaries has 4 degenerate ground states due to the

removal of 2 of the stabiliser terms [82]. The Ashkin-Teller also clearly has 4 degenerate ground states

|g1? = |+?|+? (D.49)

|g2? = |+?|−? (D.50)

|g3? = |−?|+? (D.51)

|g4? = |−?|−? (D.52)

where

|+? = |+?1 ⊗ |+?2 · · · |+?N , (D.53)

and so on. In the case where the boundaries are periodic, the degeneracy of the cluster model is broken,

however the degeneracy of the Ashkin-Teller model remains as above. In this case, what happens to the

mapping?

HCl,bare = ZNXNZ1 + ZNX1Z1 +

N−1?

j=1

ZjXjZj+1 + ZjXj+1Zj+1 (D.54)

is the periodic bare cluster Hamiltonian. This maps to

HAT,bare = σ
X
1 σ

X
N

?
N?

k=1

τ
Z
k

?

+

?
N?

k=1

σ
Z
k

?

τ
X
1 τ

X
N +

N−1?

j=1

σ
X
j σ

X
j+1 + τ

X
j τ

X
j+1 (D.55)

= σ
X
1 σ

X
NS

N
AT,1 + S

N
AT,1τ

X
1 τ

X
N +

N−1?

j=1

σ
X
j σ

X
j+1 + τ

X
j τ

X
j+1 (D.56)
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where SN
AT,1

, SN
AT,1

are τZ , σZ applied to sites 1 to N. That is, the symmetry operators. This breaks the

degeneracy of the model by this string operator. The Hamiltonian is the periodic Ashkin-Teller with these

string operators applied. The periodic bare Ashkin-Teller

HAT,bare = σ
X
Nσ

X
1 + τ

X
N τ

X
1 +

N−1?

j=1

σ
X
j σ

X
j+1 + τ

X
j τ

X
j+1, (D.57)

maps to

HCl,bare = Z1

?
N−1?

k=1

Xk

?

ZN + Z1

?
N?

k=2

Xk

?

ZN +

N−1?

j=1

ZjXjZj+1 + ZjXj+1Zj+1 (D.58)

The boundary terms can be viewed in 2 ways:

Z1

?
N−1?

k=1

Xk

?

ZN =

N−1?

j=1

ZjXjZj+1 (D.59)

= ZNXNZ1

?
N?

k=1

Xk

?

= ZNXNZ1S
N
Cl,1 (D.60)

Z1

?
N?

k=2

Xk

?

ZN =

N−1?

j=1

ZjXj+1Zj+1 (D.61)

= ZNX1Z1

?
N?

k=1

Xk

?

= ZNX1Z1S
N
Cl,1 (D.62)

where again, SN
Cl,1

and SN
Cl,1

are the symmetry string operators. The first equality for each of these shows

why this maps to a degenerate cluster Hamiltonian. It is mapped to a product of bulk stabilisers, thus is

essentially the model with open boundaries. The second equalities show the link to the periodic cluster

model, with a string symmetry operator reinstating the degeneracy.

We have shown the mapping between the Ashkin-Teller and perturbed cluster models. We have seen

how the symmetries map, and how boundary conditions affect the equivalence. Finally, we have shown how

the ground state degeneracy is linked to strings of symmetry operators. We now present the mappings to the

XXZ model, and show how for the pCL, this is local and insensitive to boundary conditions.

D.5.1 Ashkin-Teller to XXZ

We can define a mapping from HAT to HXXZ [70]

σ
Z
j → X̄jX̄j τ

Z
j → Ȳj Ȳj (D.63)

σ
X
j σ

X
j+1 → Ȳj Ȳj+1 τ

X
j τ

X
j+1 → X̄jX̄j+1. (D.64)

Then, we obtain

HXXZ = −

N?

j=1

X̄jX̄j + Ȳj Ȳj − λZ̄jZ̄j −

N−1?

j=1

β
?
Ȳj Ȳj+1 + X̄jX̄j+1 − λZ̄jZ̄j+1

?
. (D.65)

D.5.2 Perturbed Cluster to XXZ

By combining the above mappings, we obtain a local map between the pCL and XXZ models. Defining the

mapping

Xj → X̄jX̄j Xj → Ȳj Ȳj (D.66)

Zj → Ȳj Zj → X̄j (D.67)

Yj → −Z̄jX̄j Yj → ȲjZ̄j (D.68)

D. 7



D.6 Boundaries

We have already looked at the boundaries of Ashkin-Teller and pCL. The mapping between XXZ and pCL

is also of interest.

D.6.1 Periodic Boundaries

We see that the perturbed cluster model on periodic boundaries maps to the periodic XXZ model. Looking

at periodic boundaries on XXZ, we see the Hamiltonian is

HXXZ =− β[ȲN Ȳ1 + X̄N X̄1 − λZ̄N Z̄1]−

N?

j=1

X̄jX̄j + Ȳj Ȳj − λZ̄jZ̄j−

N−1?

j=1

β
?
Ȳj Ȳj+1 + X̄jX̄j+1 − λZ̄jZ̄j+1

?
.

(D.69)

Mapping this onto AT, for the boundary term, we obtain

ȲN Ȳ1 → σ
X
1 σ

X
NS

N
AT,1 X̄N X̄1 → τ

X
1 τ

X
N S

N
AT,1 (D.70)

Z̄N Z̄1 → σ
X
1 τ

X
1 σ

X
N τ

X
N S

N
AT,1S

N
AT,1. (D.71)

where the ’string’ operators SN
AT,1

and SN
AT,1

are σZ and τZ applied to all sites from 1 to N , the symmetry

operators of �2 ⊗ �2.

D.6.2 Even Chains

The ‘natural’ boundaries for the cluster model give a pair of qubits encoded on the edge spins. These map

into the XXZ and AT as

X1Z1 → X̄1 → τ
X
1 S

N
AT,1 ZNXN → ȲN → S

N
AT,1σ

X
N (D.72)

Z1 → Ȳ1 → σ
X
1 ZN → X̄N → τ

X
N (D.73)

D.6.3 Odd Chains

D.6.3.1 Ending in Red

If we consider terminating the chain with a red spin, then we get

ZN−1XN−1ZN → ȲN−1ȲN → σ
X
N−1σ

X
N (D.74)

ZN−1XN → X̄N−1X̄N → τ
X
N−1σ

Z
N (D.75)

ZN → ȲN →

?
N−1?

k=1

τ
Z
k

?

σ
X
N (D.76)

D.6.3.2 Starting with Blue

We could consider starting the chain with a blue spin. Then we would obtain

Z1X2Z2 → X̄1X̄2 → τ
X
1 τ

X
2 (D.77)

X1Z2 → Ȳ1Ȳ2 → σ
X
2 (D.78)

Z1 → X̄1 → τ
X
1





N?

j=2

σ
Z
K



 (D.79)
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We have now shown that the map between the XXZ and pCL models is local, and boundary terms

remain localised to the boundary under this operation. From this, we conjecture that the CFT describing the

thermodynamic limit of the pCL is that describing the XXZ model, namely the S1 boson.
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Appendix E

Compactified Boson Conformal Field
Theory
In this appendix, we will describe the spectrum S1 boson and S1/�2 orbifold boson conformal field theories.
These are thought to respectively describe the thermodynamic limit of the perturbed cluster and Ashkin-
Teller spin chains. The compactified free boson is a commonly used theory in many fields, and more details
can be found in [33–35, 37]. Here, we will simply state the result, emphasising the difference between the
two theories. We will use the words fields and states interchangeably, since there is a one to one map between
them, with the states being the result of acting with the field operator on the vacuum |0?.

E.1 S1 boson

The S1 boson CFT is the field theory of a free massless boson on a circle. The field ϕ(x, t) takes an angular
value at each point on the circle, and is thus subject to periodic boundary conditions

ϕ(x+ L, t) = ϕ(x, t) + 2mπR, (E.1)

where R is the minor radius of the torus traced out by the possible field values and L is the circumference of
the circular dimension. We can think of ϕ as a closed string on the surface of a torus. This gives a convenient
interpretation of e,m. m can be seen as the number of times the string wraps around the torus before the
ends are joined as in fig. E.0.1. Clearly these are topologically distinct states, so define different sectors. The
second quantum number e is a quantised momentum associated with the centre of mass motion.

This defines a set of quasivacuum states |(e,m); (0, 0, . . . , 0), (0, 0, . . . , 0)? which are all annihilated by
all Ln for n > 0. The descendant states can then be constructed by acting with creation operators Ln(L̄n),

Figure E.0.1 : Quasivacuum states are defined by their winding numberm and the centre of mass momentum

e.
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Figure E.1.1 : The full spectrum of the S1 boson CFT at R2 = 1.

n < 0, adding left(right) going waves. These are then states which look

L−1 |(e,m); (0, 0, . . . , 0), (0, 0, . . . , 0)? = |(e,m); (1, 0, . . . , 0), (0, 0, . . . , 0)? , (E.2)

L̄−2 |(e,m); (0, 0, . . . , 0), (0, 0, . . . , 0)? = |(e,m); (0, 0, . . . , 0), (0, 1, . . . , 0)? . (E.3)

Notice that adding 2 quanta using L−2 does not give the same state as L2
−1

.

The scaling dimensions and spin numbers of the vacuum states for this theory are given by [33]

∆e,m =
e2

R2
+

m2R2

4
, s = em. (E.4)

Under the replacement R → 2/R, we observe a duality between e and m, they simply swap roles. Thus, we

can equivalently think of e as a winding number or m as a momentum.

The states

L−1 |(0, 0); (0, 0, . . . , 0), (0, 0, . . . , 0)? = |(0, 0); (1, 0, . . . , 0), (0, 0, . . . , 0)? , (E.5)

L̄−1 |(0, 0); (0, 0, . . . , 0), (0, 0, . . . , 0)? = |(0, 0); (0, 0, . . . , 0), (1, 0, . . . , 0)? , (E.6)

L−1L̄−1 |(0, 0); (0, 0, . . . , 0), (0, 0, . . . , 0)? = |(0, 0); (1, 0, . . . , 0), (1, 0, . . . , 0)? , (E.7)

turn out to act as primary fields in this theory, with eqn. E.7 being the marginal field.

Recall that the radius of this theory is related to the parameter in the perturbed cluster model via

R
2
=

2

π
(π − cos

−1
λ). (E.8)

The relevant spectrum at the point λ = 0, R = 1 is shown in fig. E.1.1 By varying the radius of the compact-

ification, we vary the scaling dimensions as shown in fig. E.2.2 (a).
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Figure E.2.1 : The full spectrum of the S1/�2 orbifold boson CFT at R2 = 1.

E.2 S1/� 2 orbifold boson

The orbifolded theory is constructed by identifying ϕ ≡ −ϕ [37]. The result is that states must transform to
themselves under the swap e ↔ −e,m ↔ −m; they must be positive parity states. As such, we redefine our
vacuum states by taking advantage of the degeneracy of |e,m? and |−e,−m?. Our new vacuum states are

|(e,m)?+ = |(e,m)?+ |(−e,−m)? , (E.9)

|(e,m)?− = |(e,m)? − |(−e,−m)? , (E.10)

where the lack of photons is left implicit. The |?+ states are clearly allowed in the orbifold theory, however
the |?− states are now forbidden and do not occur. As such, we get a halving in the degeneracy.

Adding a single photon to any of the oscillator modes is negative parity, so adding single photons to |?+
states gives forbidden descendants, whereas |?− with odd numbers of photons are now allowed descendants.
So on for adding even photon numbers. Recall that L−2 adds a single photon worth 2 quanta.

The orbifold theory also permits a set of ‘twist’ fields associated with the twisted boundary conditions
ϕ(x+L) = −ϕ(x). These have fixed scaling dimensions of 1/8, and are doubly degenerate. The photons in
the twisted sector are still negative parity, but only add 1/2 to the scaling dimension rather than 1. We now
call these operators L−1/2, L−3/2 and so on.

The radius is related to the Ashkin-Teller coupling parameter via

R2 =
π

2

1

cos−1(−λ)
. (E.11)

This then has the nice property that R = 1 when λ = 0. The spectrum at this point is shown in fig. E.2.1.
Once again, we can vary the scaling dimensions by varying the radius, as shown in fig. E.2.2 (b).
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a) Full relevant spectrum for the
S1 boson CFT.
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b) Full relevant spectrum for the
S1/�2 orbifold boson CFT.

Figure E.2.2 : Full spectra for the two CFTs as the radii are varied. Notice the presence of the twist fields at

constant scaling dimensions 1/8, 9/8 and the absence of the fields with dimension 1 in (b).
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